AFIT/GSS/LAS/93D-7 Qj

ADAATE 787

ll *
ey

- ;5."3? i 22 194
‘@.@ A

DEMONSTRATION OF IMPROVED SOFTWARE
SUPPORT LABOR ESTIMATION FOR
AIR FORCE OPERATIONAL FLIGHT PROGRAMS

THROUGH FUNCTIONAL ORIENTATION _E:Es_ri)_r_x”for

NTIS CRA& -""Vg
THESIS oN Tas o ’
Uiannoed 0 l
Ronald L. Warner, Jr., Captain, USAF Justiticauon) 3
Darrell L. Wright, Captain, USAF el
By i
AFIT/GSS/LAS/93D-7 Distibution]

A

. e s et e e ——

. Avmmb ity Ceoes

et T L L

Dist Special

A |

)

“Ava arel] or ’ i
£

|

Approved for public release; distribution unlimited.

The views expressed in this thesis are those of the authors and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.

AFIT/GSS/LAS/93D-7

DEMONSTRATION OF IMPROVED SOFTWARE
- SUPPORT LABOR ESTIMATION FOR
AIR FORCE OPERATIONAL FLIGHT PROGRAMS THROUGH
FUNCTIONAL ORIENTATION

THESIS
Presented to the Faculty
of the School of Logistics and Acquisition Management
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Systems Software Management

Ronald L. Warner, Jr., B.S., M.S. Darrell L. Wright, B.S.

Captain, USAF Captain, USAF

December 1993

Approved for public release; distribution unlimited.

Acknowledgements

We wish to thank our faculty advisors, Mr. Dan Ferens and Lt Col
LaRita Decker, for their feedback and direction during the evolution of our
thesis. Their support helped us discover our own misconceptions and
reorient ourselves back to a productive path.

We also had a great deal of help in trying to obtain historical data
for our thesis. The data we needed was not trivial to find and required
some research. We are grateful to Paul Harbour, Nasser Ismail, James
Peebles, and Jim Roberson for their time and energy in collecting the data
we requested. We also thank all those who we called who weren't able to
directly provide data, but who provided us with more contacts.

Finally, we wish to thank our wives, Pat and Faustina, for their
understanding and support during our year-long effort to complete our

thesis.

Ron Warner

Darrell Wright

Table of Contents

Acknowledgements
“ Listof Figures i,
Listof Tables
Abstract e

I Introduction,
Chapter Overview,
GeneralIssue
Typical Effort Prediction Methods
SpecificProblem
Hypotheses & Objectives

Hypothesis 1
Hypothesis 2
Scope/Limitation of Research
Definitions i
Functional Categories
Block Change Paradigm
CommonTerms0uiiininin...
Research Overviewv....

II. Literature Review
Chapter Overviewy
Software Support

Definition
Process
General Software Cost Estimation Theory
Optimal Tool,
Size e
. Maintainability
Productivity
’ Schedule
Current Support Model Paradigms
. COCOMO Model Descriptioncvurn...
Basic Description
Intermediate Description
Detailed Description
COCOMO Supportcii i,

Calibration
COCOMO Strengths
COCOMO Weaknessesc.ccvvu...
COCOMO & REVIC
Conclusion i e

III. Methodology,
Chapter Overview i,
Hypothesis 1 Methodology

Block Change Model Methodology
Model Design Processc..c......

Hypothesis 2 Methodology
Data Collectionc.u.....

Model Comparison Methodology
Data Input Sequence
Apply Statistics
Apply Rejection Criteria

Conclusion

IV. Findings e e
Chapter Overview
Hypothesis 1: Functional Construction of a Software

Estimation Model
Model Design,
Model Design Validation
Model Construction
Choosing a Language
Refiningthe Model
Block Change Size
Temporal Changes
Hypothesis 2: Functional Calibration to Improve Model
ACCUraCYt e e

Demonstration
Hypothesis 2
Hypothesis 1

iv

REVIC/Prototype Model Comparison 4.40
Conclusiont 4.42
V. Conclusions & Recommendations 5.1
Chapter Overview00, 5.1
Data e 5.1
Conclusions0 i iiiiinnnnnn.. 5.1
Recommendationsc..uiiiunnon.. 5.2
Hypothesis 1: Functional Construction of a Software
Estimation Model L L. 5.6
Conclusions 5.6
Recommendations 5.7
Hypothesis 2: Functional Calibration to Improve Model
ACCUTACY . . . o ittt e et e e e 5.7
Conclusionsttt 5.7
Recommendations, 5.8
Future Research Topics 5.10
Summary e e 5.10
Appendix A: Object Oriented Model Notation Summary Al
Appendix B: Data Collection Forms B.1
Appendix C: Prototype Source Code C.1
Appendix D: Block Change Process Models D.1
Tableof Contents D.2
Object Oriented Design Models D.3
Sacramento ALC Block Change Process D.13
MIL-HDBK-347 Block Change Process D.14
Appendix E: Memory and Throughput Relationship Derivation E.l
Appendix F: Database Contents F.1
Bibliography BIB.1
Vata . e e e e e VITA.1

List of Figures
Figure Page
Figure 2.1 - Support Productivity versus System Age 2.22
Figure 4.1 - Software Support Functional Model 4.3
Figure 4.2 - PAT Functional Model 44
Figure 4.3 - Composite Database 4.28
Figure 4.4 - Normalized Composite Database 4.29
Figure 4.5 - Zoomed and Normalized Composite Database 4.30
Figure 4.6 - Series Block Change Database 4.36
Figure 4.7 - Normalized Series Block Change Database 4.37
Figure 4.8 - Support Data at 6% Added Code 4.38
Figure 4.9 - Memory Utilization Growth 4.38
Figure 4.10 - Learning Effect for Language Experience 4.39
Figure 4.11 - Block Change Adjustment Products 4.40
Figure A.1 - Object Model Notation A2
Figure A.2 - Functional Model Notation A3
Figure D.1 - Object Model, D.10
Figure D.2 - Functional Model For Single Block Change Cycle D.11
Figure D.3 - Functional Model For Block Change Cycle Series D.12
Figure D.4 - Sacramento ALC Block Change Process D.13
Figure D.5a - MIL-HDBK-347 Block Change Process D.14
Figure D.5b - MIL-HDBK-347 Block Change Process D.15

List of Tables

Table Page
Table2.1-CPIValues 2.12
Table 2.2 - Reused Code Weightings 2.13
Table 2.3 - Constraints of Memory and Timing 2.18
Table 2.4 - Utilization of Available Speed and Memory 2.19
Table 2.5 - Learning Effect by Phase 2.21
Table 2.6 - Project Modes for the Basic COCOMO Model 2.27
Table 2.7 - Adjustment Attributes for

Intermediate COCOMO Model 2.29
Table 2.8 - Programmer Ratings and Effort Multipliers 2.30
Table 29 - RELYRatings 2.32
Table 2.10 - MODPRatings 2.33
Table 4.1 - Block Change Process Model Camparison 4.6
Table 4.2 - Calibration Camparison 4.20
Table 4.3-ActualData 4.22
Table 4.4 - Input Parameters for Camposite Database 4.27
Table 4.5 - Statistical Evaluation of Calibration Source 4.31
Table 4.6 - Statistical Evaluation of Categorical Calibration 4.32
Table 4.7 - Category Calibration Results 4.33
Table 4.8 - Input Parameters for Series Database 4.36
Table 4.9 - Support Model Camparisons 4.41

AFIT/GSS/LAS/93D-7

Abstract

This study demonstrated two approaches to improve current
software support effort estimation models for aircraft software. Both
approaches involved a functional orientation not used by existing models.
The first approach demonstrated how to orient a model to reflect the block
change cycle modification process and how to represent support effort
changes over time in order to improve effort estimation accuracy. Current
software models do not reflect the support environment or the temporal
characteristics of aircraft software support. The second approach
demonstrated how to calibrate a model by properly selecting source data in
order to increase accuracy. Support calibration is not addressed by current
models. A literature search affirmed the validity of both approaches and
the methodology. In addition, a standard description of the block change
cycle was developed and validated. A prototype estimation model was
derived from the COCOMO model and included a unique support
calibration. Data was obtained from Air Force Software Support Centers
but was unusable, so data was generated from the prototype for the
demonstration. A method that was developed to compare the prototype
with current models demonstrated that the prototype is an acceptable

model.

viii

L 4]

DEMONSTRATION OF IMPROVED SOFTWARE
SUPPORT LABOR ESTIMATION FOR
AIR FORCE OPERATIONAL FLIGHT PROGRAMS THROUGH
FUNCTIONAL ORIENTATION

1. Introduction

Chapter Overview

This thesis demonstrates methods of improving existing software
support effort estimation models. This chapter begins with the importance
of software support estimation in decision making. We discuss typical
effort estimation methods in current software support estimation models
and the expected accuracies of those models for Air Force software support
projects using the block change process. Next, two hypotheses focus on
objectives for improving the accuracy of software support estimation
models. The scope of the research, definitions of important concepts, and a

brief overview of the remaining chapters complete the Introduction.

General Issue
During any phase of a software project, decision makers must know

the level of effort remaining for the project in order to make valid decisions

(Lederer:51; Bourque:161). Before starting a software project, rational

1.1

decision makers normally weigh the expected benefits against the expected

costs. The assessment of labor hour requirements is key to software

project cost estimates. A good effort estimate must accurately aggregate

the man-months required by specific skills into a total project requirement. -
An erroneous effort estimate leads to an erroneous cost estimate which, in

a worst case, will lead to an erroneous start decision.

Once the project is selected, managers allocate resources to the
project based on the cost estimate. This allocation directs how many
people are hired. Without a good effort estimate, managers might hire
extra people and waste money or hire too few people and fall behind
schedule. During the project, managers must know how much effort has
been expended versus how much effort remains in order to decide if their
project is on schedule. Actual labor costs are accumulated and tracked
against the estimated effort. An erroneous effort estimate can lead the
manager to an unrealistic progress assessment.

As explained above, good effort estimation is essential to allow
management to correctly select, staff, and monitor software projects.
However, the pitfalls associated with poor effort estimation are not limited .
to the development of the software. Software support managers repeat the
selection, staffing, and monitoring decisions made in development each
time a change is made to the software. The impact of each individual
decision is smaller than during development; however, the support phase

of large software projects has an interesting characteristic. In large

1.2

-

software projects, 50 - 80% of the life-cycle cost occurs not during the
development phase but during the support phase (after the software
transfers to its operational site) (Banker:1, DSMC:7-1). So, in terms of
cost, the support phase is at least as important as the development phase.
Since the effort estimate may determine whether the project will start at
all, managers should consider support effort very early when considering
life cycle cost-benefit trade-offs. When predicting the cost-worthiness of a
large software system, managers should also focus on the support of the
software, not just the development.

In this thesis, we examine how to improve the relationship between
computer software cost models and the software support environment.
Although computer cost models are commonly understood, explaining our
interpretation of software support can avoid confusion. Software support
often is referred to as software maintenance, but this thesis uses the term
software support because "support” avoids the connotation that
maintenance is only corrective (Ferensl:3). Software support encompasses
more than correcting coding errors; it also includes adapting existing code
to interface with new hardware and perfecting code beyond its original
capability (Hager:1638). Thus, the term software support better conveys
the overall redevelopment aspect of adapting and perfecting software as
well as correcting mistakes.

Another potentially confusing software support term is cost. Cost, a

primary measurement of software support, is typically computed in man-

1.3

months instead of dollars. Man-months quantify the amount of effort
required to complete a task while avoiding time-dependent conversions
(such as inflation) encountered when measuring cost in dollars. Using
man-months does not mean dollar costs are ignored since, given man-
months, estimators can convert to dollars. Man-months are simply easier
to compare among differing projects and times. In this thesis, the terms
cost and effort are synonymous: both describe the number of man-months
needed to accomplish a specified subset of the software life-cycle such as

one block change during the support phase.

Typical Effort Prediction Methods

Software managers use many techniques to predict levels of effort.
The techniques can be grouped into three general methods: asking an
expert, comparing analogous projects, and invoking a software model (van
Genuchten:32). The expert method simply tasks very experienced software
analysts to predict the level of effort. Managers give experts the
requirements of a system, and then the experts wield their experience and
knowledge to forecast the cost of the new system. The analogy method
estimates the cost of a project by comparing the cost of past projects to the
cost of similar future projects. The implementor of this technique adjusts
cost according to differences between the past and future projects. The
last method, using a model, is the least used method (van Genuchten:37).

This method uses mathematics to predict the level of effort for a given set

1.4

PN

of input variables. The model is found by statistically comparing known
project characteristics (inputs) with known project costs (outputs)
(Banker:3). Assuming future costs come from the same statistical process
as the past costs, estimators can find future effort levels from proposed
project characteristics. For example, if given the number of lines of code
and the complexity of a system, a software model, such as the basic
COCOMO model, can output the man-months required to develop the
project (Boehm:57). We will discuss the COCOMO model in Chapter II.

The prime advantages of model estimators are their objectivity
(van Genuchten:40) and usability (Gulezian:235). A model is objective
because it's a mathematical function, and a predefined function is resistant
to bias. Nevertheless, the inputs to any function can be selected in a
manner to bias the final result. While training and experience can help
control this bias (Gulezian:42), models are also helpful because the
required input and the computation process can be programmed into a
software package. Non-experts can then use the software to provide quick
effort predictions and adjustments.

Unfortunately, models also have limitations. The biggest
disadvantage of models is a perceived lack of accuracy. Past predictions of
software cost estimates from computer models indeed have been
inaccurate. A thesis by a previous AFIT student (Ourada:1.3),

conversations with current software program mangers, and our personal

1.5

experience ccnfirm the poor performance of existing software cost
estimation models.

Currently, the Air Force Cost Analysis Agency recommends four
computer models for estimating software support efforts: 1) the Software
Architecture Sizing and Estimating Tool (SASET), 2) the Software
Evaluation and Estimation of Resources Software Estimating Model
(SEER-SEM), 3) the PRICE-SL Software Estimating Model, and 4) the
Revised Intermediate Constructive Cost Model (REVIC) (Mosemann:2).
Each model employs statistical techniques to predict future software effort
based on past efforts. The predictive capability of these models stems from
the assumption that all the data from past projects come from very similar
processes. However, the software engineering processes along with the
historical data from those processes have constantly changed. Using
historical data from changing processes yields computer models which
predict with high amounts of variability. This high variability
theoretically reduces the expected accuracy of a model's point estimation of
effort. Any technique that can reduce the variability of a model's

srediction can potentially increase the accuracy of the model's prediction.

Specific Problem
Before addressing how to increase model accuracy, the process by

which computer models currently estimate effort should be addressed. All

software support effort estimates from computer models lie on a continuum

1.6

between two opposing methods, parametric (top-down) and detailed
(bottom-up) (Stewart:464). The heart of the parametric method is a model
formed from correlating a measurable set of software characteristics to
known levels of effort. Models based on the parametric method use the
correlations to predict future efforts. Most current software support
models tend to employ the parametric method.

The detailed method breaks down a large, complex process into
small, simple steps and then sums an estimate of each simple step to
predict the effort of the whole process. Each step should be small enough
and simple enough to permit a quick, straightforward effort estimate of
that step.

Estimation models need not use the parametric or detailed methods
exclusively; models can combine both methods. A model could divide a
process into a few large subprocesses, estimate each of these subprocesses
by historical correlation (parametrically), and then sum the results. For
example, REVIC, SASET, and SEER divide the life cycle of software into
two parts, initial development and post deployment support. Each of these
models uses a parametric model for development estimation and a slightly
different parametric model for support estimation. The use of two models
to estimate the software life cycle cost makes REVIC, SASET, and SEER
more detailed than a single parametric model used to describe total
software life cycle cost. However, the support phase estimates of REVIC,

SASET, and SEER are purely parametric.

1.7

Armed with a basic understanding of the estimation process, we now
discuss how to make the models more accurate. We propose that
predictive accuracy of the software support models can be increased by
functionally orienting the models to reduce the prediction variability
introduced by the model. Functional orientation means adapting a model
to better represent the function(s) of the software and/or the software
support process. This functional orientation will be demonstrated in two
ways, one for each type of estimation method.

The first way to functionally orient a model is to push towards the
detailed end of the estimation continuum. The idea is to alter the support
model to reflect the actual software support process. We altered the
COCOMO model in a way which better reflects the actual process of
software support used by the Air Force called the block change process.
(The block change process is discussed in detail in the Definitions section
later in this chapter.) Selecting the COCOMO model was the result of two
considerations. First, REVIC, a model on the list of Air Force
recommended models, was derived from COCOMO. Second, COCOMO
was a well understood and popular non-proprietary model with good
documentation. Therefore, we selected a baseline model familiar to Air
Force estimators, thoroughly researched the baseline model, legally
modified it, and then verified the modifications. Altering the COCOMO
model encompassed consolidating the published regulations and common

practices of the Air Force Materiel Command that described the block

1.8

change process. With a simple model of the block change process in hand,
the next step was to adapt this process model to a COCOMO mathematical
model to produce better predictions.

The second way to functionally orient a model is to keep the model
on the parametric side of the estimation continuum but to limit the scope
of the parametric correlation. The idea is to simply calibrate a model to a
single functional area. The broadest functional area examined was aircraft
operational flight programs (OFPs). We further divided OFP software into
five functional categories: communication/identification, navigation
sensors, core avionics, electronic combat, and offensive sensors. This
calibration technique closely follows what many software experts advise -
to calibrate the model to the local environment (Boehm:524; Thibodeau:6-
6). Since the term local environment is poorly defined, this thesis
interpreted local environment as a group of software programs that are
functionally related. This interpretation avoided the connotation of
environment as a local geographic location. Models calibrated to any of
these subareas should predict better than models calibrated to aircraft
OFPs or to models calibrated to all types of Air Force software. Both
estimaéing approaches, functional calibration for parametric models and
functional adaptation of more detailed models, reflect the basic engineering
tenet that form follows function. We adapted this temet to the software

support estimation problem.

1.9

Hypotheses & Objectives

The research hypotheses and objectives are centered around the
inflight software used aboard current Air Force aircraft. The aircraft are
restricted to those with combat missions since combat aircraft have the
greatest variety of software types.

Hypothesis 1. The functional, bottom-up construction of a software

effort estimation model will increase the predictive accuracy of that model.

The objectives are to

1) model the current block change functional process with simple,

small steps.

2) program these steps into a computer model based upon
COCOMO.

3) demonstrate the improved accuracy of bottom-up modeling.

4) find specific recommendations to tailor existing models for
functional adaptation.

Hypothesis 2'. The functional, top-down calibration of a
statistically-based software effort estimation model will improve the
predictive accuracy of that model. The objectives are to

1) demonstrate the improved accuracy of functionally calibrating

cost models.

2) find specific tailoring recommendations to improve the accuracy

of cost models.
The acceptance or rejection of these hypotheses will not be conclusive, but

they should help point the proper direction for improved software support

cost estimation.

! Data limitations hindered assessment of this hypothesis. However, each objective is addressed to the extent
possible.

1.10

Scope/Limitation of Research

Our research focused on estimating the main component of software
support costs, man-months of effort, and not on auxiliary support costs
such as facilities or hardware. These auxiliary costs are better addressed
outside effort estimation models. Also, estimates for man-months of effort
on such tasks as technical order changes and flight tests may vary
between block changes and accuracy may vary accordingly. However, the
proposed changes should increase accuracy over current models.

Evaluating the hypotheses required obtaining data from a
sequential series of block changes on two different operational flight
programs from each functional category. A time series of actual data could
then be used to simulate an entire software support lifecycle to test the
predictive accuracy of all the models for the entire software support phase
with multiple block changes. Both time series and individual block change
effort data could be used to calibrate the models and used to test the
predictive accuracy of all the models for a single block change effort.

The minimum set of data sought for each block change was the
number of lines of code changed, the time length of the block change, the
effort duration in man-months, and a description of the code function.
Other information, such as available memory and throughput, could fulfill
a particular model's variable set. Most of the models require these
additional variable values to fine tune the estimate; otherwise, default

values must be used. Once entered, these additional variables were to be

1.11

held constant, except in the case of available memory and throughput.
Unfortunately, acceptable size data was not available. The impact of this
data unavailability is discussed in Chapters III and IV.

The data search was limited to combat aircraft (F-111, F-15, F-16,
B-1, B-52, E-3, AC-130) that had an established software support history.
These aircraft also had subsystems from many of the functional categories.
Our search narrowed to these specific aircraft to focus on aircraft that
were likely to have the data we needed. Although we expected few
complete data sets to exist, we did expected to find, at a minimum, enough
data to determine if we were pointed in the proper direction.

Narrowing the data search to specific aircraft was consistent with
the focus of this thesis. After identifying a set of Air Force software that
was functionally different than other types of Air Force software, we
further divided that set, again based on function, into subsets. This thesis
is a first cut at improving software support estimation. Future research
still needs to be done once actual data becomes available to confirm the
findings and to determine at what level of subdivision the proposed
methods cease to work. This work provides few resolute answers but,

instead, serves as a catalyst for future research.

1.12

Definitions

Functional Categories.

1) Core Avionics (Fire Control Computer, Stores Management,
Display Generation) that are usually purchased from the airframe
contractor as Contractor Furnished Equipment.

2) Offensive Sensors (Fire-Control Radar, Infrared Search Track
sets, LANTIRN Targeting Pod, PAVE PENNY Pod, PAVE TAC Pod,
AWACSs radar, JOINT STARS radar) that may be internal or external to
the airframe.

3) Communication/Identification Systems (HAVE QUICK, HAVE
SYNCH, VHF, UHF, IFF, Integrated Air Data Modem, etc.) that are
common across many aircraft types.

4) Electronic Combat Systems (Radar Warning Receivers,
Chaff/Flare Dispensers, Electronic Jamming Systems, Missile Warning
Systems, etc.) that are added to the aircraft for self protection.

5) Navigation Sensors (Global Positioning System, Inertial
Navigation units, LANTIRN Navigation Pods, Terrain Following Radar,
Microwave Landing System) that are used for precision navigation.

Block Change Paradlgm. The software support lifecycle consists of a
periodic series of redevelopment blocks as governed by DoD-STD-2167A
and described by MIL-HDBK-347. These blocks may overlap or be

separated in time and have the following characteristics:

1.13

1) Each block encompasses a mixture of support categories
(maintenance, optimization, adaptation, new capability).
2) Each block may have a fixed interval, duration, budget, or
manning level.
3) Each block is either organic (Air Force) or contractor logistic
support (CLS) or a mix of both.
4) Each block requires access to non-aircraft facilities for
development and test.
5) Facility costs (development and support) are part of the life-cycle
cost and are not part of any particular block change cost.
6) Facility needs are similar within functions and different between
functions.
7) Flight test costs for non-core avionics are budgeted by the
aircraft and are not part of the change cost.
8) Change efficiency may be different for each block change.
9) Total effort per block change is a function of
a) number of lines to be changed
b) number of lines to be added
¢) number of lines to be deleted
d) change complexity
e) available memory and throughput
f) organization efficiency
g) organization experience and skill level
h) organization resources

1) schedule .
j) documentation

1.14

The actual process used when a new block change is produced is
very similar to the development of new software. The biggest difference
between a new development and a single cycle of the block change stems
from the starting point and the requirements maturity. A block change
starting point is an established software baseline. The starting point for a
new development is a requirements document. The requirements for the
block change are problem reports and change requests based on the actual
performance of the software configuration and inherently different than
the more abstract requirements that document new development uses.

These differences between a new development and a single block
change result in an additional process at the start of each block change.
In this process the block change requirements (problem reports and change
requests) are reviewed, prioritized, and approved by the Configuration
Control Board (CCB) for incorporation into the software baseline. From
that point on, the support process is similar to a development effort. The
requirements are mapped into the baseline software, coded, tested, and
then released. After release, the process may begin again.

Cammon Terms.

1) Operational Flight Program (OFP): Software written for an
airborne computer requiring real-time processing, interaction with other

aircraft computers, and fault tolerance.

1.15

2) Lines of Code (LOC): Each OFP source instruction changed,
added, or deleted in the software update. This should be counted in a
before and after comparison.

3) Software Support Activity (SSA): the DoD or military service
organization responsible for the software support of designated computer
software.

4) Software Support Product (SSP): A single, fully developed,
tesied, documented, and supportable computer instruction set replicated in
sufficient quantities and delivered to the installation point (excluding the
original development). Under the block change process, SSP is usually
completed on a periodic basis.

5) Block Change Cost Estimate: Estimation of all costs associated
with the production and delivery of a single software support product.

6) Software Support Life Cycle Cost Estimate: Estimation of all
costs associated with the production of all software support products for a
specific computer.

7) Software Support Estimate: Estimation of all costs associated
with the production of a single support product.

8) Bottom-Up Cost Estimate (detailed): Estimation method where
the project is broken into a number of smaller tasks. Each task is
estimated independently by analogy, by parametric model, or by best

engineering judgement, and the results are summed for a project estimate.

1.16

9) Top-Down Cost Estimate (parametric): Estimation method where
the project is estimated without significant subdivision of the tasks. The
common methods of Top-Down estimation include analogy and parametric
models.

10) Configuration Control Board (CCB): An organization composed
of representatives from the SSA and software users that approves changes

to the configuration of designated computer software.

Research Overview

Chapter II presents a review of available literature, regulations, and
operating instructions pertaining to the Block Change Process and current
methods used by Air Force organizations to estimate support costs. The
next chapter also reviews available literature and model manuals to
examine the paradigm that existing software cost estimation models use to
estimate support costs and to examine alternatives to existing cost models.
Interviews supplement the literature as needed. Chapter III addresses the
methodology used to build and evaluate the models and the collection and
analysis of the data. Chapter IV is devoted to findings while Chapter V

contains our conclusions and recommendations.

1.17

II. Literature Review

Chapter Overview

The track record of cost models to accurately predict software
support cost is disappointing. In a 1980 study sponsored by the Air Force,
the Hughes Aircraft Company found that none of the current cost models
fulfilled the requirement for estimating avionics embedded software
support costs (Wainal:27). In 1991, Ferens concluded that none of the
eight cost models he examined were shown to be quantitatively valid
(Ferensl:11). Clearly, there is room for improvement in software support
cost estimating models.

Before improvement can be made, a comprehensive understanding of
the software support cost estimation problem is needed. This literature
review investigates four areas: software support definition and process,
general software cost estimation theory, current support model paradigms,
and the COCOMO/REVIC software cost model. Each of these areas form a
cornerstone to building better software support estimation models. The

results of the literature review are presented in this chapter.

Software Support
Definition. The most relevant definition of software support comes
from the Defense Systems Management College Mission Critical Resources

Management Guide. The term for software support used in the Guide is

2.1

Post Deployment Software Support (PDSS) which has been defined by the
Joint Logistics Chiefs (JLC).

Post Deployment Software Support is the sum of all activities

required to ensure that, during the production/deployment phase of

a mission critical computer system's life, the implemented and

fielded software/system continues to support its original operational

mission and subsequent mission modifications and production
improvement efforts. (DSMC.:7-5)
Military Handbook 347, Mission Critical Computer Resources Software
Support, defines PDSS as

Those software support activities that occur during the full-rate

production and initial deployment and operations support phases of

the acquisition process. (DODZ2:8)
Both definitions are compatible with the software support definition
proposed in Chapter I. Software support is corrective, adaptive, or
perfective. The JLC definition makes additional allowance for changes due
to mission modifications. These changes are adaptive under the definition
scheme used in this research.

Barry Boehm espouses the corrective, adaptive, and perfective
categories to define support (Boehm:536). On the other hand, John
Reutter divides support into seven categories: emergency repairs,
corrective coding, upgrades, changes in conditions, growth, enhancements,
and support (DSMC:7-6). The seven categories may provide a more
descriptive categorization of the work, and further investigation may prove

one categorization better than the other, but such investigation becomes

an academic argument. The JLC definition succinctly shows the

&)
o

ot

overriding issue: software support is the effort required to make the
software system continue to work after it is fielded in spite of mission
and/or hardware changes. How software support is categorized, except for
occurring before or after fielding, is generally irrelevant to the task of
estimating the cost of the effort. Once the software has been fielded, any
changes that follow are support changes no matter what other
categorization is used.

Process. The usual process for making DOD software support
changes is referred to as the "block change". Under this concept, a number
of changes are made during one time span and then they are all released
simultaneously (Ferens3:65). In 1980, the Avionics Laboratory of the
Wright Aeronautical Laboratories sponsored the Hughes Aircraft Company
to investigate the block change process for aircraft Operational Flight
Programs (OFPs) as part of the Predictive Software Cost Model
development (Waina 2). Hughes documented the support process for the
A-7, F-111, F-16, F-15, various Electronic Combat (EC) equipment, and
various pieces of Automated Test Equipment (ATE). The process described
showed minor differences in detail from aircraft to aircraft and are typified
by the F-16 process.

The F-16 block change process, according to the Hughes report,
begins by collecting reports of computer program deficiencies and
descriptions of new capabilities. The support organization then prepares

preliminary Engineering Change Proposals (ECPs) for each potential

change. Next, feasibility studies and engineering tests are conducted to
better define the change, and the results are presented at a Technical
Conference (TC). Members of the TC establish priorities, revise the
Preliminary ECPs as necessary, and obtain user approval. In the
subsequent step, software requirements are formulated and then reviewed
in a Preliminary Design Review (PDR). Programming and checkout occur
in the next step culminating in a Critical Design Review (CDR). After
CDR, the revised OFP is incrementally tested ending with flight test. The
support organization performs Functional and Physical Configuration
Audits at the end of the test phase. The software then goes through a
Validation and Verification (V & V) process ending with the release of the
software to the field (Waina2:344-345). It is interesting to note that the
block change process documented in the Hughes report has changed little
during the past 10 years.

Several changes in Air Force software regulations have occurred
since the Hughes report was written, most notably the introduction of
DoD-STD-2167 in 1985 followed by DoD-STD-2167A and -2168 in 1988.
All of these standards affect the software documentation, configuration
management, and quality programs of the software déveloper and the
support organization. DoD-STD-2167A also requires the CDR before s
coding and adds a Test Readiness Review before testing (DOD1:10).

Other process changes are documented in MIL-HDBK-347. This

handbook initiates the PDSS process with the submittal of a

24

problem/change request and then sequences four major phases: initial
analysis, software development, system integration and testing, and lastly
product logistics (DOD2:25). Spanning these phases is the continuous
activity of support operations and maintenance. The final product of the
process is a delivery package.

A more detailed description of the PDSS process would label the
problem/change report as the name applied to any form that reports
software problems or proposes software enhancements. For each report
during the initial analysis phases, the software support activity (SSA)
collects all necessary decision-making information inciuding change
classification, impact analysis, estimated effort, and risk identification.
The Configuration Control Board (CCB) then examines this initial analysis
and decides if the proposed changes should be implemented. The
development phase accepts the initial analysis as a starting requirement
and proceeds to develop the change until the modified software is ready for
testing. During system integration and test, the SSA incrementally tests
the system until the software performs acceptably on real-time hardware
in a realistic operational environment. Faults are identified, isolated, and
then corrected throughout testing. Finally, the SSA reproduces and
verifies the final delivery packages, delivers them to the users, trains the
users on the new changes, and may even install and check out the updated

software. Throughout the entire PDSS process, support operations and

maintenance activities provide the overhead structure necessary to keep
the SSA functioning smoothly.

It is interesting to note that the processes described by Hughes,
DoD-STD-2167A, and MIL-HDBK-347 differ in only minor degr=zes.
Although the PDSS process may require a few unique activities such as
final package delivery and training, all the above processes are more
similar than dissimilar. The support process descriptions demonstrate
that the phrase "re-development” is an apt label for the PDSS cornerstone
of the software support estimation. In fact, MIL-HDBK-347 explicitly cites
the PDSS software development phase as following a DoD-STD-2167A

development cycle (DOD2:25).

General Software Cost Estimation Theory

To aid understanding of the second cornerstone of software support
estimation, general software cost estimation theory, an optimal software
support estimation tool based on the available literature was synthesized.
The first step was to define the characteristics of an optimal tool and
identify what parameters were necessary for the tool to estimate effort
accurately. The next step was to investigate the parameters themselves to
understand their expected behavior over time and to understand their
interactions with each other. The following section reviews the results.

Optimal Tool. An ideal software estimation tool would accept some

number of known block change efforts along with their production

characteristics and would contain a regression relationship that could be
used to predict future efforts. The production characteristics would be
easily observable and would have been recorded along with the original
data. The most likely factors to be correlated are magnitude of effort
(expressed in man-months) and the size of the product (expressed in LOC).
Given a set of expected lines of code and production characteristics, the
tool could find an estimate of the effort required. Any variations in man-
hours between projects of the same size are due in part to the differences
in the situation under which the effort is accomplished (its production
characteristics). A better tool reduces these variations by adjusting for the
production characteristics. If possible, the tool should divide the variation
sources into mutually exclusive categories. Otherwise, if covariance exists
between variation sources, the tool must perform additional calculations.

The number of potential production characteristics is enormous so
some reasonable limit must be found. What is the minimum set of data
needed to build a model? Given the definition and process of software
support, any software support cost estimation tool needs to account for at
least the following parameters:

1) the magnitude of the software change (size).

2) the ease of altering the software (maintainability).

3) the organizational efficiency of changing software (productivity).

4) the time allowed for the change (schedule).

These parameters are not independent. Some dependencies are

intuitive. For example, schedule may impact size (management may

reduce the scope) if the estimate shows the work can't be done within the
schedule. Productivity should increase for easily maintainable software.
Other interdependencies emerged from the literature as well.
Furthermore, the first three parameters can be divided into a number of
factors that should be addressed separately. These factors as well as the
parameter interdependencies are discussed below.

Size. Since size is the primary cost driver for software projects
(Boehm:58), size is often the starting point of a software cost model.
Mukhopadhyay and his associates assert that "A fundamental problem of
software estimation is the determination of software size"
(Mukhopadhyay:156). While Boehm refers to "Annual Change Traffic" as
being equivalent to development product size, he says little about how to
derive it (Boehm:536). For software support changes, the change needs to
be expressed in some term of size that accounts for the number of lines of
software to be changed. Software size is normally expressed as Lines Of
Code (LOC), Source Lines Of Code (SLOC), or Deliverable Source
Instructions (DSI). All three units basically refer to a single line of code as
might be seen on a code printout.

After a line size unit is identified, a choice of which lines to count 6r
not to count is needed to further define size. Low and Jeffery list five
counting variations: 1) count only new lines; 2) count new lines and

changed lines; 3) count new lines, changed lines, and reused lines; 4) count

all delivered lines plus temporary scaffold code; and 5) count all delivered
lines, temporary code, and support code' (Low:64).

Of these five variations, variation 2 is preferred since it best
captures only what was changed from the baseline to the final block
change product with the exception that this variation does not account for
deleted lines. Variation 1 gives a count of zero if no new lines were added.
Variation 3 captures one complexity facet but counts more than what was
changed. Counting reused lines can capture the added complexity of
designing and checking for potential problems in a large program.
Howevér, this same complexity facet can be captured by calibrating the
model to similar sized programs. Variations 4 and 5 not only count more
than what was changed, but they also require extra code counts to capture
the size of temporary development code. Temporary development code is
not part of the baseline and is not delivered. Once past the sizing units
and line selection, an estimate of the size of the change is still needed.

According to current literature, there are three general methods of
deriving size which are available to the estimator. The first method is
analogy in which a similar effort of known size is selected and its size
becomes the estimate (Reifer:159). The second method is expert analysis
where an expert estimates the size of the effort based on previous

experience (Reifer:159,160). The third method, Function Point analysis, is

! Support code used in this context is code which supports development (such as stubs, drivers, or tests) and
not code which is produced during the support phase.

a process that uses software functions to predict size and complexity
(Reifer:159). All three of these methods typically have been applied to
estimating development software size. However, software support sizing
can have unique differences that might not exist during development size
estimating.

Once a software product enters support, three changes can occur to
the baseline code. Lines of code can be added, modified, or deleted. Size
measurements historically have focused on the original development size
by creating new code where none previously existed. However, software
support does not always develop completely new requirements and a code
sizing technique for support is needed for code modification and deletion
activities. Two techniques that consider size for changes other than new
code were found in the literature.

The first technique addresses code modification and comes from
Boehm's conversion cost estimating relationship (Boehm:558). For this
research, converting old code to a new application is tantamount to
modifying code withi’n an existing application. The equivalent delivered
source instructions (EDSI) for a number of adapted DSI (ADSI) is found by
multiplying the latter by a conversion adjustment factor (CAF) (see

equation 2.1).

2.10

CAF
EDSI=(ADSH S22 Eq. 2.1
“bSh%

where EDSI = equivalent delivered source instructions
ADSI = adapted delivered source instructions
CAF = conversion adjustment factor
The CAF can be viewed as a percentage fraction of the adapted (modified)
code size and is the sum of two parts, the adaptation adjustment factor
(AAF) and the conversion planning increment (CPI). The AAF is found by
calculating a weighted average of the percentages of design modified (DM),

code modified (CM), and integration required for modified software (IM)

(see equation 2.2).

AAF=0.40(DM) +0.30(CM) +0.30(IM) Eq. 2.2

where AAF = adaptation adjustment factor
DM = % design modified
CM = % code modified
IM = % integration for modified software
Boehm selected weightings based upon a general average fraction of effort
devoted to design, code, and integration/test (Boehm:137). The CPI value
is found by using a simple table developed by Boehm. The table is shown

in Table 2.1.

2.11

Table 2.1

CPI Values (Boehm:558)

e = S m— e
VC;I;IG Level of Conversion Analysis and Planning T
0 None
1 Simple conversion schedule, acceptance plan
2 Detailed conversion schedule, test and acceptance plans
3 Add basic analysis of existing inventory of code and data
4 Add detailed inventory, basic documentation of existing system
5 Add detailed inventory, detailed documentation of existing system

As mentioned earlier, CAF = AAF + CPI. Using this relationship and
substituting equation 2.2 for AAF, a more detailed form of the EDSI

equation is derived (equation 2.3) as shown below.

EDSI=(ADSI) (0.40*DM +Q.30*CM+0.30+IM)+CPI Eq. 2.3
100
where EDSI = equivalent delivered source instructions

ADSI = adapted delivered source instructions
DM = % design modified

CM = % code modified

IM = % integration for modified software
CPI = conversion planning increment

Once computed, an EDSI can be substituted in cost model equations in

place of a pure development DSI measure.
The second technique that sizes code other than new code comes

from Reifer Consultants in their manual for SoftCost-R (Kane:R-83). This

sizing model differentiates among five categories for a support line of code.

A line can be new, added, deleted, modified, or retested. The model also
distinguishes between actions that occur upon a single LOC and those
within a module of code. Besides differentiating between lines and
modules, there are two subtle differences between Low and Jeffery's
change categories (page 2.9) and those proposed by SoftCost-R. The first is
a category to count code that is not changed but is retested during the
block change process. The second difference is a splitting of the added
category based on the source of the added line. The SoftCost-R new
category represents a line created from scratch for the block change while
the added category represeﬁts a line created for some other program that
is added (reused) as part of the block change. The equivalent size is the

sum of the size of new code plus the size of reused code (see equation 2.4).
Equivalentg;, =New,, +Reused,, Eq. 2.4

Each size category is weighted as shown in Table 2.2.

Table 2.2

Reused Code Weightings (Kane:R-83)

Percent Weight Type of Reused Code
27 Modified Modules
15 Deleted Lines
53 Added Lines
24 Changed Lines
11 Deleted Modules
17 Retested Modules

[

13

Reifer includes a set of assumptions for e .n of the five categories to allow
estimators to properly categorize changed lines (Kane:R-84). The
assumptions are listed below:

* New code will be developed according to a well-defined process and set
of product standards, including those for documentation.

* Reused code may not necessarily have been developed according to the
well-defined process and products standards. Its documentation may or
may not be up-to-date.

* Reused code will be identified during the preliminary design phase so
that code added, deleted, and/or changed within units will go through
all subsequent life cycle activities.

* Deleted lines require reduced design, coding, and documentation effort,
and no testing of the deleted lines.

* Changed code will take the same implementation effort (i.e., detailed
design, coding, and unit testing) as new code in proportion, but with
less documentation and testing.

* Reused code will not include code added, deleted, or modified in any
other way.

* Retested, unmodified code will require revalidation of the interface
design and retesting activities only.

+ All modified and reused code will be completely retested and requalified
prior to integration into the system.

The total of the reused code is the weighted sum of all the A
appropriate code types as shown in Table 2.2. The following equation is

the complete expansion of equation 2.4 according to Table 2.2

SizeEqu =New,,...+[(27Modified,, ,...) +(.15Deleted, .)
+(.53Added,,,,) +(.24Changed,,.)) Eq. 2.5
+(.11Deleted,, ;) +(.17Retesed,, ,....)]

Each part of the equation should be expressed in the same units.
Generally this will be LOC, although it could be a percentage of the total
code. Equation 2.5 shows that added LOCs are weighted less than new

LOCs. In addition, since the weightings total more than 1.0, this equation

2.14

allows a highly modified portion of code to cost more than functionally
equivalent code developed from scratch.

This literature review on size has shown that any size estimate
involves selecting units, an appropriate set of LOCs, and an overall sizing
methodology. For a support size estimate, Boehm's conversion relationship
and Reifer's sizing model were presented as tools that can account for size
other than new code. The major point to be made about size estimation is
that better size estimates produce better cost estimates. Reifer states
"Because most of the popular software cost estimating models in use today
are extremely sensitive to size inputs, there is a direct correlation between
improving the capability to predict both size and cost” (Reifer:159).
Therefore, size estimation should provide the foundation of the estimate
and the remaining parameters of maintainability, productivity, and
schedule should be used to fine tune the estimate. The next subsections
address these remaining three parameters.

Maintainability. Maintainability is a design feature of the software,
its documentation, and its environment. The design sets the structure of
the code under which support programmers can alter and maintain the
code. The documentation communicates this structure and the software
environment bounds the programmer's freedom to alter the code.
Therefore, these three characteristics affect maintainability and help
determine if the software itself has been designed to allow easy

modification or if the software documentation understandable and current.

2.15

It is easy to underestimate the effect of documentation on support effort,
but according to Robson and his coauthors, "50-90% of maintenance time is
devoted to program comprehension” (Robson:79). The authors go on to
state that comprehension can be affected by the design of the software, the
style in which the software was written, the convention followed when
naming - ariables in the software, the presence of indentation and the
number of spaces used in the format of the software, and the presence of
comments to explain the software (Robson:80,81).

Robson and his coauthors also discuss automated systems that have
been developed to help the maintainer better understand the software but
drew no conclusions on the usefulness of those systems (Robson:80-83).
However, there is an interdependency between the maintainability
parameter and the productivity parameter. Does the maintenance
organization have and use such automated systems? If so, what is the
effect on productivity? Answers to these questions need to be obtained to
properly tune the effort predicted from size alone. The discussion so far
has dealt with the software itself and has excluded the documentation of
the software. The documentation presents other potential pitfalls which
are discussed in the following paragraphs.

Documentation must not only be understandable it must be precise
enough to prevent misunderstanding. Cioch states

In practice, when one wishes to ascertain the understandability of a

particular software-related product, one is often concerned not only
with the degree to which, or the ease with which, the information is

2.16

grasped mentally, but also the degree to which it is misinterpreted
by the person examining the product. (Cioch:85)

He suggests that misinterpretations are more dangerous than lack of
comprehension. Misinterpretation is harder to detect and can cause
unintentional changes to the specification which result in software that
doesn't match what the user expects. When misinterpretation mistakes go
unnoticed in the current change, they must be fixed later (Cioch:86).
Another possible constraint on maintainability is the hardware
environment where the software resides. In real-time environments such
as avionics, software is especially susceptible to memory and throughput
constraints imposed by hardware. As the operating memory available
decreases, programs have less room to expand for corrections or
enhancements. This lack of room forces support programmers to write
more size-efficient code and increases the effort needed to write the code.
Throughput responds similarly. As the available throughput of software
decreases, programs have less time to manipulate data and communicate
with other programs. This restricted ability also forces support
programmers to write more efficient real-time code in terms of throughput
(or timing). Again the effort required increases. In a continuation of the
Hughes study of the Predictive Software Cost Model, SYSCON quantified
these effects for several different support phases (see Table 2.3). In Table

2.3, the timing fill is equivalent to throughput.

[}

17

Table 2.3

Constraints of Memory and Timing (SYSCON:33)

Support Phase % Memory Fill % Timing Fill
Requirements Review 1.42X5° 1.33x°%
Design 2.00X"% 1.82x'¥
| Development 1.88X'* 1.82x'Y
Integration 1.59X 97 1.55x %4
Test & Evaluation 1.32X% 1.39X %
Documentation 1.13xX% 1.09%'*
Reproduction/Installation 1.04X %% 1.04X '

For both restrictions, the equations apply only if the percentage is greater
than or equal to 75%. SYSCON determined that lower percentages had no
effect on cost (SYSCON:41).

The PRICE-S model describes the effects of available speed (time)
and memory utilization as one relationship (see Table 2.4). This model
shows that the speed and memory constraints have a much greater effect
on cost than on schedule. In Table 2.4, normalized costs greater than 1.00
represent an effort increase beyond that for an unconstrained effort.

Utilization ratios less than 0.50 have no effect on cost.

Table 2.4

Utilization of Available Speed and Memory (Boehm:516)

Utilization | Normalized Cost | Normalized Schedule
0.50 1.00 1.00
0.60 1.08 1.00
0.70 1.21 1.00
0.80 1.47 1.05
0.85 1.73 1.10
0.90 225 1.18
“ 0.95 3.78 1.35

Productivity. Following maintainability, the second major
parameter needed to fine tune an effort estimate is productivity.
Productivity is the measure of an organization's efficiency of converting a
conceptual change into reality. The less time and resources required, the
more efficient the organization. Normal organizational inefficiency takes
the first bite out of productivity. Fried states

People in formally organized groups cannot be productive 100% of

the time for extended periods. According to general overhead

estimates, in the average organization, at least 25% of employee
time is required for vacations, sick leave, personal time off, training,
coffee breaks, and administrative and organizational meetings. In
addition, 10% of employee time (a conservative estimate) is
nonproductive because of late completion of activities on which the
employee depends, poor work scheduling, personal conversation, and
other forms of idle time. (Fried:28)

There are a number of conceptual factors that affect productivity of

an organization engaged in software maintenance. Obvious factors which

affect Air Force SSAs include the experience level of both management and

2.19

maintainers, maturity of the maintenance process, software eng;ineering
practices and methods, familiarity with the software being modified, and
resources available (computer time, specialized software tools, etc.).
Banker, Datar, and Kemerer cite over 100 variables to explain productivity
(Banker:1). However, their productivity model uses only five variables: the
ability of the project team members, the level of previous experience with
the application, the use of structured analysis and design software
methodology, the level of hardware response time, and the operational
quality of the resulting system (Banker:6). The last variable is not used to
predict productivity but rather to determine the quality of the products
produced. The obvious factors affecting Air Force SSAs listed earlier in
this paragraph have only one element in addition to Banker's model. This
conceptual agreement is very good considering Banker's model is a
research tool used to measure the productivity of software maintainers
working for a commercial bank. Even though the applications and
language used for business are not what would be used in Air Force
weapon systems, the models suggest that a small set of variables might be
used to estimate productivity.

A benefit of successive block changes for software supporters is the
built-in educational experience that occurs through those successive block
changes. SYSCON quantified this relationship for different support
phases (see Table 2.5) and reported that the maximum time of this effect

is six years (SYSCON:44). At the end of six years, the supporters should

W
9
o

have learned the maximum amount from the original code. This
relationship assumes that the software supporters are not the same
programmers who developed the software.

Table 2.5

Leaming Effect by Phase (SYSCON:33)

ﬂ Support Phase Years of Support
Requirements Review 1.61X
Design 164X
Development 1.65X 3¢

I Integration 1.65X

l Test & Evaluation 1.58X 3%
Documentation 1.43X°

|| Reproduction/installation 1.19% 3

Symons confirms this initial productivity increase in his description
of DuPont's support productivity versus system age (Symons:149).
DuPont's productivity improved from about 1.5 work-hours per function
point to about 0.25 work-hours per function point' in the span of about 3
years. However, after those initial three years, the productivity slowly
decreased to near 1.0 work-hour per function point during the next 15
years. As plotted in Figure 2.1, these two trends exhibit a classic "bath-
tub” shape, an initial decrease in required effort (increase in productivity)

followed by a steady effort increase (decreasing productivity) for the

! A function point is another sizing method. In this case. one function point can be considered proportional
to one line of code. (See Symons for more information on function points).

221

remaining support life span (Symons:150). Symons attributes the slow
rise in required effort to technical deterioration because the original
pristine design becomes degraded from constant maintenance and

enhancement (Symons:150).

2s

Productivity

Age of System (years)
Figure 2.1 - Support Productivity versus System Age (Symons:149)

Lehner also describes this bath-tub phenomenon as an initial 3-year
decrease in the corrective portion of maintenance from about 25% to 15%
followed by a slower but steady 9-year increase up to 45% (Lehner:135).
Lehner points out that this behavior is more prevalent within
environments where the requirements are constantly changing, and less
prevalent where the requirements are static (Lehner:137).

A third observer of design deterioration is Yuen. He confirms

decreasing productivity with age in his evolution dynamics report. He

o
9
o

states that "the original structure of a piece of large software is inevitably
corrupted each time the software is modified" (Yuen:160).

. Schedule. The last major fine tuning parameter, behind
maintainability and productivity, is schedule. This variable strongly
interacts with productivity. Fried espouses that schedule is a balance of
costs. Shortening or lengthening a schedule almost always increases the
cost. Lengthening a schedule also delays the benefit of a new system
(Fried:28). Fried argues that schedule should be driven by team size
because each member in a programming group must spend some time
communicating and interacting with others in the group (Fried:28). Thus,
an excessively large group requires an excessive amount of communication.

According to Fried, the formula for computing the number of possible

interactions () between a group of K people is given in equation 2.6.

1=_K(_’§:_1) Eq. 2.6

where I = number of possible interactions
K = number of people in a group

Fried then uses the equation in an example of 90 people working a
standard 40 hour work week. Out of 3,600 available hours, only 538 are
productive. This is independent of how the 90 people are organized
(Fried:28-29). Groups of 10 people or less are the most productive while
larger groups spend more time communicating for each additional team

member (Fried:29). Fried suggests that using proper tools and modern

2.23

programming techniques reduces the number and length of
communications (Fried:35).

The support schedule, whether driven by team size or management
dictate, combines with productivity, maintainability, and size as minimum
parameters of an optimal estimation tool. Of these four parameters, size
is the most important. The other three can be considered to fine tune an
effort prediction based solely on size. How a specific model accounts for
these parameters determines the unique characteristics of that model.
The next section briefly examines how the Air Force recommended models

handle these parameters.

Current Support Model Paradigms

As stated earlier, there are four models recommended by the Air
Force Cost Analysis Agency. They are 1) Revised Intermediate
Constructive Cost Model (REVIC), 2) the System Evaluation and
Estimation of Resources (SEER), 3) the Software Architecture Sizing and
Estimating Tool (SASET), and 4) PRICE-SL. The REVIC, SASET, and
SEER models represent software support size as a constant number of
LOC changes made to the software per year (Silver2:3-12; REVIC:1.4;
SEER:6-5). The term used in this research for support size, Annual
Change Traffic (ACT), is borrowed from COCOMO. The ACT concept is
simple in that the estimator determines what percentage of total SLOC

will be changed per year and provides this to the model. ACT models a

o
o
-~

system under continuous change. The best interpretation for a system
employing the block change process for support is a continuous series of
block changes with each effort being identical in size and taking exactly
one year to complete. None of the models is flexible enough to handle
variation from the one year schedule.

As for the maintainability parameter, only SEER accounts for
decreasing maintainability from memory and throughput. For
productivity, none of the models seem to account for learning curve effects
or for design entropy effects, nor do they capture the "bath-tub” curve
supported by the literature. Flexibility to handle various schedules,
changes in memory and throughput, a learning curve, and design entropy
is necessary to model the real world. REVIC/COCOMO algorithms can be

adapted to accept this flexibility.

COCOMO Model Description

Of the four Air Force recommended models, both SEER and
PRICE-SL are proprietary models and are not subject to unconstrained
alteration. Of the remaining two, SASET and REVIC, REVIC is much
easier to calibrate (Ourada:4.8). Since a model which could be freely
altered and easily calibrated was needed to test our hypotheses, model
research was oriented towards understanding the algorithms and
construction of REVIC. REVIC is essentially an implementation of

Boehm's COCOMO with a few additions. Therefore, a discussion of

COCOMO is warranted since it directly contributes to an understanding of
REVIC. The COCOMO model, as published in Barry Boehm's Software
Engineering Economics, has three levels of detail: the basic, intermediate,
and detailed levels. Each of these COCOMO levels are described in the
following sections.

Basic Description. The basic COCOMO model predicts development
man-months from one input. That input is size measured in thousands of
delivered source instructions (KDSI) (Boehm:57). The equation for the

basic model is shown in equation 2.7.

where MM = Man-Months
a = coefficient factor
b = exponent factor
This equation reflects the exponential characteristic of large systems. If a
software system doubles in size, the effort needed to produce that system
more than doubles. This non-linear effect helps estimators predict a
variation in man-months given a variation in KDSI.

Since equation 2.7 is the basic COCOMO equation, it should only be
used for first-cut approximations (Boehm:114). Although this equation can
account for large-scale variations in the characteristics of any project, the
parameter pair a and b can be changed to accommodate three basic modes

of a project environment: the organic, semidetached, and embedded modes

(Boehm:78-79). These basic modes are summarized in Table 2.6.

N
9
(=2}

Table 2.6

Project Modes for the Basic COCOMO Model (Boehm:75-85)

Mode

Description

Equation

Organic

- Thorough understanding of project

- Highly experienced personnel

- Stable and familiar znvironment

- Minimal need for innovation

- Low premium on early completion

- Relatively small size (less than 50 KDS!)

MM=2.4(KDSD'%
Eq.2.8

Semidetached

- Considerable understanding of project

- Intermediate or mixed personnel
experience

- Partial experience with project aspects

- Larger sizes (less than 300 KDSI)

- Mixture of Organic and Semidetached

MM=3.0(KDSD"*?
Eq. 2.9

Embedded

- General understanding of project
- Tight constraints

- Complex hardware & software

- All sizes

- Take up hardware slack

MM=3.6(KDSI)'*°
Eq. 2.10

Intermediate Description. For second-cut approximations, the

intermediate COCOMO equation (see equation 2.11) contains 15 more

inputs to increase the accuracy of the effort estimate (Gulezian:237).

where

MM=a(KDSI)® TIC;

MM = man-months
a = coefficient

Eq. 2.11

KDSI = thousands of delivered source instructions

b = exponent
Il = product function

C; = adjustment, i = attribute & j = selection

1o
o
e

The C; adjustment factors' increase the usefulness of the basic model by
allowing for variations in 15 project attributes. Each factor allows
estimators to account for different project attribute characteristics and
thus fine tune the estimate. Estimators choose a value for each factor
from a set of possible values ranging from slightly below one to slightly
above one and then multiply the value by the values for the other 14
adjustment factors to produce a single Effort Adjustment Factor (EAF).
The 15 factors are briefly described in Table 2.7. Estimators choose which
value to multiply into the EAF based upon their assessment of the
attribute's effect on the project. Estimators choose a value for each factor
below, near, or above 1.0 depending on whether that particular attribute

reduces, preserves, or inflates the basic effort.

! Adjustment factors are also known as cost driver attributes (Boehm: 115), effort multipliers, effort adjustment
factors, and cost driver multipliers (Gulezian:237). They all have a common theme -- inputs.

o
(]
Qo

Table 2.7

Adjustment Attributes for |
Intermediate COCOMO Model (Boehm:118)
) Area Factor | Description Multiplication |
N Range
) Product RELY Required Software Reliabiiity 0.75-1.40
DATA Data Base Size 0.94 - 1.16
CPLX Product Complexity 0.70 - 1.65
Computer TIME Execution Time Constraint 1.00 - 1.66
STOR Main Storage Constraint 1.00 - 1.56
VIRT Virtual Machine Volatility 0.87 - 1.30
TURN Computer Turnaround Time 0.87 -1.15
Personnel ACAP Analyst Capability 1.46 - 0.71
AEXP Applications Experience 1.46 - 0.71
PCAP Programmer Capability 1.42-0.70
VEXP Virtual Machine Experience 1.21 - 0.90
LEXP Programming Language Experience 1.14 - 0.95
Project MODP Modern Programming Practices 1.24 - 0.82
TOOL Use of Software Tools 1.24 - 0.83
SCED' Required Development Schedule 1.23-1.00-1.10

Table 2.8 shows an example of the possible values for the
programmer capability (PCAP) attribute. As the programmer rating falls
below nominal, the effort multiplier increases. The opposite case is also

. true. For cases which fall between two definitions, estimators can

! SCED has two multiplication ranges. A factor of 1.0 represents projects with a nominal schedule. Reducing
the schedule from nominal results in a multiplication range of 1.00 - 1.23. Lengthening the schedule from nominal
results in a multiplication range of 1.00 - 1.10. In both cases, successively larger multipliers are used as the
schedule departs from the nominal estimate.

interpolate to find the appropriate multiplier. Thus, a 45th percentile
programmer could have a 1.08 multiplier.
Table 2.8

Programmer Ratings and Effort Multipliers

PCAP Definition Mutltiplier
Rating (Not based upon experience, only capability)
Very Low Ranked at the 15th percentile of all programmers 1.42
Low Ranked at the 35th percentile of all programmers 1.17
Nominal Ranked at the 55th percentile of all programmers 1.00
High Ranked at the 75th percentile of all programmers 0.86
Very High Ranked at the 90th percentile of all programmers 0.70

Detailed Description. Third cut approximations require the most
comprehensive form of COCOMO, the detailed COCOMO model. The
detailed model increases estimation precision by breaking out all 15
adjustment factors into four phases of development: product design,
detailed design, code/unit test, and integration/test (Boehm:364). Although
the application of adjustment factors to separate phases leads to a more
accurate description of an actual development process, it increases the
predictive accuracy by only 2% (Boehm:521). This small increase in
estimation accuracy is usually not worth the added expense of assigning
adjustment factors to each phase. Thus, the detailed level of the
COCOMO model is not used in general practice and most estimators use

the intermediate form (Gulezian:237).

COCOMO Support. The COCOMO model normally is used to
estimate the development effort of a software project (REVIC:4). But
almost all the attribute factors which affect the development process also
affect the support process. The model needs only a few adjustments to
switch from predicting development effort to predicting support effort. The
main adjustment required is scaling the man-months of effort. A

prediction for development forecasts the entire effort for the development

phase. However, support effort is usually for a fixed period of time,
typically near one year. In a sense, the support inodel scales a total
development effort since scaling is done proportionally. Boehm calls this
scaling, which is the expected percentage of code changed for a specific
period of time during support, the Annual Change Traffic (ACT)
(Boehm:536). For example, if a development effort prediction was 120
man-months and the 2 CT was 10%, the expected support effort for one
year would be 12 man-months.

Another support adjustment to the COCOMO model involves
altering three of the adjustment factors shown in Table 2.7: SCED, RELY,
and MODP. The required development schedule (SCED) is only a factor
during development and is dropped as an input for support estimation
(Boehm:129). The next adjustment factor, required software reliability
(RELY), measures the probability that the software will perform its

intended functions satisfactorily over its next run or its next quantum of

execution time (Boehm:372). Table 2.9 shows how the RELY values

change from development to support.

Table 2.9

RELY Ratings (Boehm:374,538)

Phase Ratings
Very Low Low Nominal High Very High
Development 0.75 0.88 1.00 1.15 1.40
Support 1.35 1.15 1.00 0.98 1.10

Table 2.9 quantifies the fact that programming low reliability software
during development requires less effort, but supporting low reliability
software requires more effort. The final altered adjustment factor, modern
programming practices (MODP), also manifests different effects between
development and support except, in this case, modern programming
practices help reduce effort in both development and support. The

difference is in the degree of effect as shown in Table 2.10.

2.32

Table 2.10

MODP Ratings (Boehm:538)

Phase
Very Low Low Nominal High Very High

Development 1.24 1.10 1.00 0.91 0.82
2K 1.25 1.12 1.00 0.90 0.81

Support 8K 1.30 1.14 1.00 0.88 0.77
(Size) 32K 1.35 1.16 1.00 0.86 0.74
128K 1.40 1.18 1.00 0.85 0.72

512K 1.45 1.20 1.00 0.84 0.70

For small sized changes, the support MODP ratings are very close to
development MODP ratings. However, as the change size increases, the
impact of MODP increases in both a positive and negative manner. Thus,
as the size of the support change increases, the risk and payoff of using
MODP increases.

The previous COCOMO descriptions show that COCOMO has three
modes and levels of detail. Those simple options along with the minor
alterations for the support phase make COCOMO a relatively simple and
usable model. While REVIC uses all three modes, the intermediate level
of detail, and the support alterations, COCOMO has yet another
characteristic that makes it usable; COCOMO is straightforward to
calibrate.

Calibration. Calibration of any model can improve the accuracy of

its prediction. In fact, Thibodeau, in his evaluation of software cost

2.33

estimating models for the Rome Air Development Center, showed that the
calibration of model parameters may be as important as the structure of
the model in explaining estimating accuracy (Thibodeau:6-6). If the
prerequisite data is available, all three levels of the COCOMO model are
straightforward to calibrate. The intermediate COCOMO model can be
calibrated in three ways depending upon the depth of calibration. All
three calibrations adjust some parameter(s) of the COCOMO model
through least squares regression to adjust for new or altered historical
data. The result should be an improved model which predicts better for
those efforts closely resembling the historical data used for calibration.
The first calibration method calibrates only the coefficient of the basic
model (see equations 2.7 - 2.10). Boehm recommends this method if the
project's historical data has less than ten data points (Boehm:529).
Calibrating the exponent of COCOMO equations with less than ten data
points may unduly bias the exponent because one erroneous data point
may overwhelm the contribution of the other nine data points. The least
squares regression equations for both coefficient and/or exponent

calibration are shown in equations 2.12 through 2.15.

Eq. 2.12
n
T MMQ,
a=fl)
n Eq. 2.13
L}
i=1

where i =1, 2, ... the number of historical data points
[T = product of C;; adjustment factors for a data point
a = coefficient for a set of data
b = exponent for a set of data (given)
Q. = temporary variable from equation 2.12
MM, = man-month
If more than ten historical data points are available, then the
coefficient and the exponent can be calibrated at the same time. The
resulting calibration equations are still least squares regressions but

include the log function to account for the exponent and are solved

simultaneously.

ay=n
a-= E log(KDSI)
:' =1
az=i§1[1°8(KDSli)]2 Eq. 2.14
dréllogwum,

n
d,= X log(MM/M), log(KDS)),
i=1

where a, a, G, d, d, = intermediate variables for Eq. 2.15
n = number of historical data points
i =1, 2, ... the number of historical data points

2.35

a,dy-a,d,

log(a)=—2 1%t
G Eq. 2.15

b= Ml —aldo

a0
where a, a, Gy dy d, = intermediate variables from Eq. 2.14

a = coefficient for a set of data
b = exponent for a set of data

. The third calibration method adjusts the coefficient, exponent, and
all the effort multipliers for each effort adjustment factor and each mode.
In this calibration method, Gulezian extends the least squares regression
procedure to the multivariable case and improves the estimating accuracy
of COCOMO. For Boehm's original database (Boehm:496), the
intermediate form of COCOMO predicts within 20% of the actual effort
68% of the time while Gulezian has improved the intermediate model to
predict within 20% of the actual effort 75% of the time (Gulezian:240).
The extra accuracy does require more mathematical manipulations during
calibration and would likely involve using a personal computer, but the
extra accuracy is available.

COCOMO Strengths. The choice of modes, levels of detail, and
methods of calibration point to one of the advantages that COCOMO has
over other models: COC .0 is flexible. Estimators have had access to
the model and have studied the model for over ten years (Gulezian:236).

This open model permits estimators to explore inner workings, avoid

pitfalls, and adapt the model to different situations. The key element of

2.36

model flexibility is the ability to change the input parameters and
environmental factors. The parameters and factors which define the model
are not magically pulled from a hat. They are carefully derived through
statistical inference. If the environment of the software project changes
severely, then estimators can rederive the parameters and adjustment
factors to produce a model which more accurately reflects the current
environment. This process is called calibrating the model. A properly
calibrated model has been shown to give much more accurate results than
an uncalibrated or badly calibrated model (REVIC:4).

Another advantage of COCOMO is its wide-spread use. For
example, every DOD Defense Plant Representative Office (DPRO) has used
the COCOMO model to help estimate software (ENREV:1). This
commonality helps organizations produce results which are understandable
and applicable to other organizations. Since many organizations
understand the environmental factors that affect an effort estimate, the
organizations can speak the same estimation language.

A final advantage of the COCOMO model is its usability. Dr. Barry
Boehm, the creator of the COCOMO model, fully explains the
implementation of the model is his book Software Engineering Economics
(Boehm:Chap 5 - 9, 23 - 30). If estimators encounter difficulties when
implementing the model, they can refer directly to the expert's handbook.
Furthermore, since the model is simple to program on a computer,

software versions of the model which run on the common personal

2.37

computer are available. The Enhanced REVIC Advisor (ENREV),
developed by Ernst, tutors users through each step of the estimation
process and explains all the terms needed for input (ENREV:12).

COCOMO Weaknesses. Of course, the COCOMO model is not the
panacea for estimators' problems. The model does have weaknesses.
Although calibration was mentioned as a strength, it is also a weakness.
While calibration offers flexibility to change environments, it is mandatory
when environments change significantly. The model becomes inaccurate
unless it is calibrated to the new environment (van Genuchten:38) and
calibrating the model is not trivial. First, input data concerning the two
basic equation parameters and the 15 adjustment factors must be
available. This requires enough data to establish trends for each input so
that new values can be inferred. This kind of data is scarce and, if found,
is usually of poor quality. Secondly, someone with statistical skill and
COCOMO knowledge must actually perform the calibration. Finding a
qualified estimator to calibrate a model can be difficult. The lack of these
prerequisites often constrain estimators to use the latest model on hand
regardless of the model's proper calibration.

Another weakness of the COCOMO model is the lack of specific
adjustment factors for the support phase of a project. Many development
attributes do indeed set support attributes, but to expect that support is
merely an extension of development can mislead estimators about the true

nature of the support environment. Some support factors, such as support

2.38

growth phases or block changes, are unique to the support phase.
COCOMO does not sufficiently provide for these support-unique inputs
(Ferensl:8,9).

The greatest weakness of the COCOMO model is the model's
reliance upon KDSI as a primary input. First of all, KDSI is rarely
estimable early in a software life-cycle (Bourque:161). But fortunately, as
the support phase nears, actual ‘KDSI values can be input into a support
model. Also, the definition of a delivered source instruction (DSI) is open
to some interpretation. Boehm defines a DSI as a single, delivered line of
code which excludes comments but includes job control language, format
statements, and data declarations (Boehm:59). This definition reduces
misinterpretation but does not eliminate it. Unless estimators follow the
explicit definition used during calibration, they will bias their results.
Finally, one DSI for a particular programming language is not necessarily
equivalent to a DSI for another programming language (Lehner:139). As a
result, simply switching programming languages can bias effort prediction.
These three weaknesses of mandatory calibration, missing support
adjustment factors, and unreliable KDSI inputs often compel estimators to
use or create other models.

COCOMO & REVIC. As mentioned earlier, REVIC is an
implementation of the COCOMO model. Maj. Ray Kile programmed
REVIC, a military version of COCOMO, using a data base of 281

completed contracts from the Rome Air Development Center database

2.39

(ENREV:1) to calibrate a new set of coefficients and exponent-s for all three
modes of the model. REVIC also includes an additional mode, with its
own coefficient and exponent, for Ada developments using an cbject-
oriented analysis (REVIC:2). Also, REVIC also has 4 extra adjustment
factors: requirements volatility, required reusability, classified security
application, and management reserve for risk. To further aid estimators,
REVIC includes a s%mple sizing model which sums the sizes of separate
computer software components (CSCs). Users can provide a low, high, and
most probable size for each CSC. These CSC size ranges can help set a
total size range. The extra descriptors combined with a simple interface

have made REVIC a popular model throughout DOD.

Condusion

This literature review examined definitions of software support as
well as the processes used to accomplish support. The essential areas of a
capable estimating model including size, maintainability, productivity, and
schedule were explained. Finally, the COCOMO model was scrutinized to
provide an understanding of its algorithms, strengths, and weaknesses.
The sources reviewed all indicate that the existing software maintenance
effort estimation tools are inadequate for estimating software support. In
general, the tools are inaccurate or inappropriate. However, many
drawbacks of existing models have been addressed in the literature along

with possible improvements. Combining some of the improvements and

addressing some of the drawbacks, provides a potential for improving

support cost models.

III. Methodology

Chapter Overview

This chapter details the steps needed to analyze the data to support
each of the hypotheses. For the first hypothesis, the functional bottom-up
construction of a software cost estimation model, the method used to model
the various levels of the block change process is described. Also described
is the process used to develop an estimation model from the block change
process model. Since no data was available to validate the new model, a
discussion of how validation can be accomplished is presented. For the
second hypothesis, the functional top-down calibration of a statistically-
based software effort estimation model, discussion is limited to the data
collection method and a description of the data originally sought. Further
work on this hypothesis was impossible due to lack of data. However, a
method for formally evaluating model performance once data becomes
available is presented. This discussion follows a chronological flow of
events from the data input sequence to applying statistical rejection

criteria.

Hypothesis 1 Methodology
Block Change Model Methodology. Documenting the block change

process as a model was a necessary first step to program a software

support cost model. The objective was to create a cost model that is closer

3.1

to the detailed estimate methodology than current parametric models. The
transition from paper model to software design is eased by the proper
selection of documentation style. This research uses the Object Oriented
Design documentation style as described by James Rumbaugh and others
in Object-Oriented Modeling and Design because of its versatility and prior
experience with that design method. Selecting a software design
methodology to document the real block. change process has two main
advantages. The first is the reduction in software system design time
gained by avoiding translation of requirements from some other
abstraction media into a software design. The second is direct traceability
from the model to the software design. Both of these advantages resulted
in fewer errors in the final product.

Rumbaugh's design method revolves around three model types: the
object model, the functional model, and the dynamic model (Rumbaugh:6).
The model types describe different characteristics of the problem space,
and, when combined, form an overall description of a system. Each model
type is described in the following paragraphs.

The object model is the primary description of the agents within the
process. It is described by Rumbaugh as a graphic representation that
"captures the static structure of the system by showing the objects in the
system, the relationships between objects, and the attributes and

operations that characterize each class of objects" (Rumbaugh:21). /i

Lo
()

-

object is defined as "a concept, abstraction or thing with crisp boundaries
and meaning for the problem at hand"” (Rumbaugh:21). No process or
temporal information on the system is captured by the object model.

The functional model shows how data flows from one process to
another in a series of data flow diagrams (Rumbaugh:123). It traces the
inputs of the system through transformational processes within the system
to the outputs of the system. No information on the static structure or the
temporal behavior of the system is captured by the functional model.

The dynamic model describes the temporal behavior of the system.
It uses state transition diagrams to describe "the sequences of operations
that occur in response to external stimuli" (Rumbaugh:84). No structure
or process information is captured by the dynamic model.

The importance of each model depends entirely on the system being
modeled. For example, if the system doesn't change over time, the
dynamic model is trivial and may be omitted. The purpose of each model
is to force an analyst to examine and understand the static structural,
procedural, and dynamic facets of the system. Each model uses a standard
set of labeled symbols to pictorially describe system behavior. (A summary
of each model's notation is shown in Appendix A.) Label definitions for all
the models are contained in a data dictionary. The data dictionary coupled
with the graphic nature of the models allows the analyst to interact with

system experts to avoid miscommunication.

3.3

Model Design Process.

Step 1. The first step captured the attributes of a single
iteration of a block chanée process as described in the literature review.
The description was in the form of an object model, a functional model, a
dynamic model, and a data dictionary. The object and functional models
provided a complete picture of the block change process, so the dynamic
model was dropped. The object and functional models were verified by
consulting with HQ/AFMC and by comparing the models to the available
literature.

Step 2. The second step started with the design from the
models of a single block change process and evolved into the models of a
series of block change processes. This "ideal" (described in Chapter II)
support cost estimation model for the block change process was also
documented in the form of an object model, a dynamic model, a functional
model and data dictionary. The result of this step was three graphic
representations that combine to form a description of a software support
cost estimation model. At this point the ideal model was still generic. Any
development estimation tool could, in theory, have been adapted to
emulate the ideal model by repeated development estimates or by recoding.
The ideal model was verified by comparing the object, functional, and
dynamic models with the Step 1 models and with available literature.

Step 3. The third step instantiated the ideal model based on

the COCOMO equations discussed in Chapter II. This instantiation

3.4

placed the COCOMO mathematical models into the ideal model's object,
functional, and dynamic representations. Verification consisted of
comparing the instantiation with the ideal model and ensuring the
COCOMO mathematical model was correctly transcribed.

Step 4. The fourth step was to prototype the instantiation.
Visual Basic was selected as the coding language since it is a quick, easy,
object-centered language designed to create code for the Windows
environment. Rudimentary verification was obtained by comparing the
estimate of a single block change of all new code to a REVIC estimate of a
development effort with identical parameters. The support costs were
compared with other models to determine the magnitude difference
between Air Force recommended models and the new model. The results
are presented in Chapter IV.

Completion of the above steps did not result in a calibrated or
validated model, only a feasible model. Calibration and validation
required actual time series support data that were not available. The
result of calibration and validation would have been an expected prediction
accuracy. Without these steps, the model has an unknown accuracy.
However, validation can be accomplished by calibrating the model and
gathering the statistics discussed under Model Comparison Methodology

later in this chapter.

3.5

Hypothesis 2 Methodology

Data Collection. Data could not be obtained to examine the effect of
functional calibration on model accuracy. (For a full account of the
problems encountered, please refer to Chapter IV.) The following
paragraphs discuss what type of data needed to be collected and why.

Historical data from the software block change process was needed
from as many combat aircraft as possible. As a minimum, for each block
change, three pieces of data were needed: the size of the effort (divided
into new, modified, and deleted lines) measured in thousands of lines of
delivered code (KDSI), the magnitude of the effort to produce the code
measured in man-months (MM), and a functional description to place the
data into one of our proposed functional categories.

Also needed were some limited data concerning the detailed
characteristics of each block change to help fine tune a model's predictive
capability. The data collection forms prepared to obtain this data are
shown in Appendix B. However, the data were not available. Since the
research assumes that KDSI is the single best predictor of effort, the
inability to obtain detailed characteristics (other than size) should not
hinder the ability to determine whether functional division of block
changes improves predictive accuracy. Extra block change characteristics
could help determine to what degree functional division improves accuracy
for each particular model. Collection of extra descriptive data suitable for

each model was simply impractical due to time and money constraints.

3.6

Therefore, the potential benefit of setting the production characteristic
input variables was balanced against the potential error (and effort
required) which might be introduced by choosing inapprdpriate values, and
a decision was made to use the nominal values provided in the model for
those inputs.

Attempts were made to obtain historical block change data from two
basic sources. The first source was existing Air Force databases which
have already compiled the input values and output values concerning this
research. As stated in Chapter I, many prediction models are built by
collection and statistical regression of historical data. It seemed natural
that historical data would be systematically collected and stored to help
make new models or improve existing ones. While the Air Force
recognizes the need for historical data, the current databases were found
to contain data for software development but not software support.
Because of this lack of support data, questionable accuracies (Ourada:4.1),
and unusable variable formats of the database, no useful data was
obtained from this source.

It was expected that more and higher quality block change data
could be obtained by contacting the System Project Offices (SPOs) located
at Wright-Patterson AFB (WPAFB). Virtually every Air Force combat
aircraft is represented by some SPO located on the base. The SPOs

assisted in the collection of some data by providing contacts within the

appropriate software maintenance organization (SMO). In all cases, the

3.7

SMO was at an Air Logistic Center (ALC) and the ALCs provided all the

data found.

Model Camparison Methodology

This section describes how to recalibrate existing (and future)
support cost models and gauge the resulting accuracy increase. This
methodology is generic and can be used with any software cost model once
data becomes available. The data requirements are discussed under
Hypothesis 2 Methodology. Recall from Chapter II that ten data points or
more are required for accurate calibration of the REVIC exponent. Ten or
more data points should suffice as a minimum for other models as well.
Model calibration should be done according to the User's Manual for the
software. Once the calibration procedure is complete the model is
calibrated to the new data set and will be ready for estimating.

Data Input Sequence. If data had been available, the models would
have been operated under three different scenarios. The first scenario was
to input no calibration data at all. In other words, this scenario did not
include recalibrating the model. The model was to be run "out of the box"
using its existing calibration. The predictions obtained from this scenario
would serve as the baseline to determine the predictive improvements of
each subsequent scenario. The second scenario included recalibrating the
models based upon all the block change data from all the functional

categories. Although this scenario does not functionally calibrate the

3.8

models according to categories chosen in Chapter I, this calibration should
produce a model that is functionally narrowed to the area of OFP software.
The models calibrated in this scenario were expected to predict better than
the uncalibrated models under the first scenario. The third scenario
included recalibrating the models based upon the inputs from the
functionally stratified data. The models calibrated according to the third
scenario were expected to predict the best.

Apply Statistics. Statistical techniques could be used to evaluate
which scenario produces the best predicting model. Devore defines a
statistic to be any function of random variables constituting one or more
samples, provided the function does not depend on any unknown
parameter values (Devore:231). The two major constructs of a statistic are
a set of random data and a function to operate on the random data. From
this basic starting point, boundaries on the methodology begin to emerge.
First, the statistical functions chosen to employ as an evaluating tool
center around the branch of statistics known as analysis of variance
(ANOVA). The nature of this research fits this type of analysis very well.
As the predictive capability of a model increases, the variance of the error
of the model's prediction will decrease. The predictive accuracy of a model
is measured by the variance of the errors of that model. Second, the
limited available data could not provide random data. Ideally, a random

sample would be chosen from data on all the software support efforts in

3.9

the entire Air Force history. Limited data forced the assumption that the
data collected would not significantly bias the results.

One way to help compensate for this weakness is to apply more than
one statistical function to the available data. Four statistics, three of
which are related to ANOVA techniques, can be applied. The first statistic
is the adjusted coefficient of multiple determination (R?. The value of this
statistic can be interpreted as the proportion of the total variation of the
observed values' that can be explained by a multiple regression model and
adjusted for the degrees of freedom? (Neter: 241). The equation used to

calibrate R? is shown in equation 3.1.

R2=1-_DP -4 -1 Eq. 3.1
SSTO n n-p
n-1 .21 (Eacz, “E)’
l:
where R? = coefficient of multiple determination

SSE = sum of squares for errors

SSTO = sum of squares total

n = number of data points

p = number of estimated parameters (2)
t=1,2,..n

E,, = actual effort

E,, = estimated effort

E,,, = average effort

! An cbserved value for this research would be the effort in man-months associated with a particular block
change.

2 . . ,
The degrees of freedom can be considered as to the number of observations minus the number of parameters
required to be estimated. Smaller sample sizes have smaller degrees of freedom.

3.10

In equation 3.1, SSE is associated with the variation of the estimation
errors of the regression model, SSTO is associated with the total variation
of the observed values, n is the number of observations, and p is the
number of parameters estimated by the regression model. The possible
values for R? range from 0.0 to 1.0. The variation explained by the
regression is assumed to come from a linear regression of the historical
data. If the assumed regression is not linear, then the regression must be
transformed into a linear regression or a different statistic should be used.
For example, COCOMO uses an exponential model that can be
transformed into a linear model by taking the logarithm of both sides of
the model equation.

The second statistic is the relative root mean square error (RRMS)
where error is the difference between the actual and estimated value. The
statistic is the ratio of the root mean square over the average actual value

(see equation 3.2).

1 1
;E (E‘“"t— ‘-"’)2
RRMS=I;MS=\ i=1 Eq 3.2

n

avg 1
;.2 E ac,
i=1
where RRMS = relative root mean square

RMS = root mean square
n = number of data points
1=12, ..n

E,, = average effort

E_, = actual effort

E,, = estimated effort

3.11

The third statistic is a simple prediction level. The function is the
ratio of the number of samples, k, whose magnitude of relative error
(MRE) is less than or equal to a given percentage, /, over the toial number
of samples, n (see equations 3.3 and 3.4). Although the value of the
statistic is simply a ratio of samples which meet the minimum MRE, the
statistic is easy to comprehend and does provide a broad gauge to measure
an improvement. The possible values for the prediction function range
from 0.0 to 1.0. A minimum value for MRE of 25%, where MRE is

computed as in equation 3.4, was used in this study.
PRED()-X Eq. 3.3
n

where | = prediction level percentage
k = number of samples within prediction level
n = number of samples

MRE=|i“_-E_“‘I Eq. 3.4
|Eee|

where MRE = magnitude of relative error
E,., = actual effort

ac

E.,, = estimated effort

The last statistic is the proportion of saﬁple estimates which are
more accurate after functional calibration. By applying the above
statistics to each model before and after a calibration, the predictive value

can be assessed. If the predictive value of a particular block change

sample improves, then it is assigned a value of one. Otherwise the block

3.12

change sample is assigned a value of zero. The sum of those samples
which improve after calibration can be described as a binomial variable.
The proportion is the value of the binomial variable divided by the total
number of samples. If the functional orientation of the model does nothing
to improve the predictive accuracy of the model, then an improvement
ratio near 0.0 is expected. A ratio near 1.0 would indicate improved
predictive accuracy.

Apply Rejection Criteria. For each statistic, a predetermined
rejection criteria is needed to determine whether the value of the statistic
supports or rejects the hypotheses. The following paragraphs provide
recommendations and a discussion of alternatives and potential problems.
While the choice of rejection values is somewhat arbitrary, a pass-fail line
is needed to judge any improvement in the predictive capability of
functionally oriented models.

For the adjusted coefficient of determination, an R? value of .9 or
higher indicates that the predictive capability of that model is acceptable.
The R? associated with a given model can be used to compare different
models to determine which explains more variation. However, since
detailed input information required for each model may not be available,
comparing the R? of one model with high quality inputs to the R? of
another model with low quality inputs may not be conclusive. These
inappropriate comparisons may restrict the ability to state which model is

better than the others. When trying to support the main hypothesis of

3.13

improvement, the value of R? will either rise or not rise. By observing the
change in R? an assessment of a model's improvement can be made.

For the root mean square error, an RRMS value of 0.25 or less to
indicate an acceptable model was chosen. Using this statistic to compare
two models may be inconclusive because of different input requirements
for each model. However, the statistic can be used to determine whether
an individual model shows improvement after functional orientation.

For the percentage prediction function, a predictive percentage of
within 25% of the actual value on 75% of the samples was chosen to
indicate an acceptable model. Once again, using this statistic to compare
two models may be inconclusive because of different input requirements
for each model. However, the percentage in the prediction zone can also
be used to determine whether an individual model shows improvement
after functional orientation.

For the improvement ratio, the hypothesis that the model does show
improvement from functional orientation is accepted if the ratio supports a
0.1 level of significance. This rejection criteria is the main criteria for the
hypothesis that functionally calibrating a model improves predictive

accuracy.

Condusion
This chapter described the methodology for constructing and

evaluating the two hypotheses. The test tool of the first hypothesis is a

3.14

model which competes with the four Air Force recommended models. The
design process for this new model and the calibration/verification
methodology were presented. Under the second hypothesis, four statistics
that could be used to evaluate the four Air Force recommended models
within the five functional categories were reviewed. However, the second
hypothesis could not be statistically tested due to a lack of useable data.
Suggestions for gathering data to validate this hypothesis in future

research are presented in Chapter V.

3.15

IV. Findings

Chapter Overview

This chapter summarizes the activities for evaluating the two
hypotheses. First, in support of the bottom-up model construction
(Hypothesis 1), Boehm's COCOMO maintenance equations are adapted to
the avionics PDSS process to produce a prototype software model. Second,
in support of our functional calibration (Hypothesis 2), calibration
procedures are defined for the prototype model in order to represent a set
of historical data. Next, attempts to obtain useful support data from Air
Force organizations are reviewed and then, because of a lack of useful
data, fictional data is generated as a substitute. Finally, the fictional data
is processed through the prototype model to demonstrate how the results
of processing actual data might appear. The result of the model building
was a software tool that could confirm or deny the hypotheses with actual

data.

Hypothesis 1: Functional Construction of a Software Estimation Model

Constructing the prototype model occurred in three phases. The
first phase included describing an avionics block change process in object
oriented terms. The second phase consisted of a review of the description
to determine if it adequately reflected the existing software support

environment. After validation the description, the third phase involved

4.1

implementing parts of the description in Visual Basic' code. (See
Appendix C for the source code.) The Visual Basic program was a tool for
demonstrating our hypotheses and a prototype for constructing a so.ftware
support estimation program.

Model Design. Using the object oriented design methodology
described in Chapter III to document the block change process was very
successful. To begin, we modeled a single block change cycle as an object
model, a functional model, and a dynamic model. The dynamic model
provided little insight into the block change process; it tracked only
whether software was currently in a block change process or not.
Therefore, the dynamic model was removed from the model set. The set
was now composed of an object model that identified the important players
in the block change process and a functional model that described the
block change process as a series of subprocesses. The final results are

detailed in Appendix D and summarized in Figure 4.1.

! Visual Basic is a registered trademark of the Microsoft Corporation.

4.2

Software Support Data Flow Diagram

\
Effort Pnormzc Draft ccB
Estimate Board ECP Process
N

~
Problem Rgons P

z Estimate

—N

eed Date Effort
/

Change Requests
_ Apptoved\ECP .
Current Baseline A
/ Develop
Changes
.) Test TaDe
A7 FigntFaied
Flight Problems Tape AN
not Waivered Ground
~ Flight Test megrated lmeqramn
Probiem Reports Minor Fiight ape T“'
Problems Test Tape
Waiver
Board Tested Tape M' Ground Failed
Integrated lntegmm Tape
Waivered Tape Problems
Integration
R

eproduce w roblems not Rework \
Tape ave wavered |\ /
s Board /

Current Baseline \r/ \\/ —

/ Updated Tapes \\
& Manuals N
Problemn Reports
Fieid 4
Change
Operational Tape

Figure 4.1 - Software Support Functional Model

Model Design Validation. Our model diagrams served as a common

reference for comparisons with support models from existing avionics block
change process. AFMC/HQ recommended discussing the support process

with a process action team (PAT) at Sacramento ALC who had completed a

detailed review of the entire PDSS process in October 1990. The PAT

compiled a detailed report using a computer aided software engineering

43

(CASE) design tool and structured system design techniques to document a
PDSS process (Talbot). Structured design, a predecessor to object oriented
design, was compatible to our model for direct comparison. Comparing the
structured analysis data flow diagrams prepared by the PDSS PAT (see

Figure 4.2) to our object oriented functional models (see Figure 4.1), which
used the same notation, was direct and simple. The models correlates well

with only a few minor differences.

PROCESS 1
EVALUATE
\ CHANGES \/\

PROCESS 4
POST DESIGN
DEPLOYMENT SOFTWARE
" PROCESS 8 SOFTWARE v
PRODUCE SUPPORT
MODIFICATION
PACKAGE PROCESS

PROCESS § \
MODIFY
SOURCE CQDE

PROCESS 7 \ PROCESS 6
INTEGRATION INTEGRATE
TESTING \ SOFTWARE

Fig'nre 4.2 - PAT Functional Model (Talbot:15)

We contacted Sacramento ALC to reconcile the differences between

the PDSS PAT model and our block change model. The differences stem

4.4

from an assumption made by the PAT; their model assumed successful
completion of all software support activities on the first try. The PAT
model did not show any rework or waiver paths. Since the block change
model had no assumption of success, it included rework and waivers as
alternative paths from both the integration and flight test processes (see
Figure 4.1). Table 4.1 is a comparison of the single block change cycle
model to the PAT model and the MIL-HDBK-347 process description. The
close correlation of the our model to the PAT model was tacit confirmation

of our model.

4.5

Table 4.1

Block Change Process Model Comparison

HYPOTHESIS 1 SACRAMENTO ALC MIL-HDBK-347
Block Change PAT Process Process
Process Model

1) Estimate Effort 1) Evaluate Changes 1) Initial Analysis

2) Prioritize Board
3) CCB Process

4) Develop Changes 2) Analyze System 2) Develop Software
Requirement

3) Analyze Software
Requirement

4) Design Software
S) Modify Source Code

6) Integrate Software 3) System Integration
and Test

5) Ground integration Test | 7) Integration Testing
6) Flight Test

7) Waiver Board (Not Modeled) (Not Modeled)

8) Rework (Not Modeled) {Not Modeled)

9) Reproduce Tape 8) Produce Modification 4) Product Logistics
Package

10) Field Change

Model Construction.

Choosing a Language. Confirming the block change support
model signaled the clearance to translate the model description into
software code. We chose to code our model in the Visual Basic
programming language for several reasons. The f:)remost reason for
choosing Visual Basic was the simple and understandable language
syntax. The mathematical algorithms implementing the support model

4.6

were easy to comprehend because of the simple syntax. Another reason for
selecting Visual Basic was the availability of pre-written software
components, called controls, which eased our programming task. These
controls also provided an excellent prototyping environment for quickly
trying different possibilities. The last reason for choosing Visual Basic
was the supplemental software included with the Visual Basic package
which had the capability to create executable and distributable programs.
Thus, anyone who wished to run our prototype could obtain free copies.
The Visual Basic language proved to be a capable and flexible language for
prototyping.

Refining the Model. Our intention of programming with
Visual Basic was not to program the entire PDSS process but to program
only that portion of the process needed to test the hypotheses. The basic
approach was to adapt the maintenance portion of Boehm's COCOMO
model to reflect block change characteristics cited in the literature review
and the PDSS process as modeled in Figure 4.1. The model accepted a
development code size, an expected change in code size, and a support
attributes as a starting point to iterate several successive block changes.
While Boehm’s COCOMO model used annual change traffic (ACT) to
represent the expected change size, the prototype introduced another size
measurement called block change traffic (BCT). Furthermore, while the

COCOMO model did not explicitly vary any attributes during successive

4.7

block changes, the prototype model altered some attributes to account for
temporal changes from block change to block change.

Block Change Size. As stated in Chapter II, Boehm described
“the expected change in code size during one year of support activity as the
ratio of the expected number of added and modified delivered source
instructions (DSI) over the total number of DSI. This ratio, called annual
change traffic (ACT), was the predecessor to the prototype ratio, BCT.
BCT was the ratio of equivalent DSI (EDSI) over the total number of DSI.
Note that while the prototype EDSI was conceptually the same as EDSI
from Boehm's conversion cost estimating (both are an equivalent size and
are weighted), the prototype EDSI was not calculated in the same manner.
The model did not use Boehm's conversion cost estimating, so all future
references to EDSI mean the prototype EDSI, not Boehm's. The model
EDSI was the weighted sum of the expected number of added, modified,
and deleted DSI for a particular block change. While Boehm's ACT did not
include deleted DSI or weight any code, the model EDSI included lines of
deleted code and weighted the three change categories. Weighing the
expected added, modified, and deleted lines of code consisted of multiplying
each change category by values from SOFTCOST-R's reused code
weightings in Table 2.2. Since the prototype did not distinguish
differences between modules and lines, it added the weightings for module
and line deleted and for modules and lines modified or changed. The

prototype model also ignored the retested modules because avionics testing

4.8

effort was better estimated by other means. The resulting equation for

EDSI is shown in equation 4.1.
EDSI=0.53%KDSI,;,,,+0.51*KDS,;,40,4+0.26+KDSI ..., EQ. 4.1

where KDSI = thousands of delivered source instructions
EDSI = equivalent KDSI

This definition of EDSI was an attempt to better define the block
change size. Remember that the major correlation in predicting effort was
between size and effort. As stated in Chapter II, better predictions in size
estimates will produce better effort estimates. Although the code size
during support was not exactly reused code as used by SOFTCOST-R,
reused code was similar enough to redeveloped (support) code to warrant
the reused weightings as a starting point for a better estimation of size.

Temporal Changes. With an adequate description of a block

change size, we described the temporal effects for each block change. The
front and back ends of the bath-tub curve, as described in Chapter II, can
accompany successive block changes. These temporal effects could come
from at least four potential sources: learning, size growth, memory and
throughput utilization, and entropy. Each of these sources is discussed in
the following paragraphs.

The first temporal effect encountered in the support phase of
software was the learning effect. The learning effect was a direct result of

support personnel working with software and its documentation. As these

4.9

personnel increased their knowledge of the support software, they could
tetter identify errors and more efficiently correct them. However, the
learning effect did not continue throughout the entire PDSS phase.
According to literature cited in Chapter II, learning lasted from three to
six years (SYSCON:44). A possible contributor to this time window is
personnel turnover. When software personnel depart from a position, new
personnel must replace them, but these new personnel are not as
knowledgeable or experienced. The departing personnel take with them
much of their learning, and that learning is lost.

The learning curve implies a relationship between the complexity of
the software and the rate at which learning occurs; more complex software
should take longer to learn. The prototype did not include a
complexity/learning relationship because no literature sources were able to
quantify it.

The prototype model did introduce a learning effect model by
decreasing COCOMO's analyst experience (AEXP) and language experience
(LEXP) multipliers for the first six block changes. Following the curve
suggested by the SYSCON data in Table 2.5, the prototype multiplied the
AEXP and LEXP attrib.utes by values less than or equal to 1.0. The
equation that calculated these values, equation 4.2, came from the
averaged exponents of the design and development equations in Table 2.5
(see Appendix E for derivation). Equation 4.2 discarded the coefficients

from Table 2.5 to force an initial multiplier of 1.0 for block change zero

4.10

(development). Succeeding block change multipliers were all less than 1.0,
resulting in an effort reductions, and were applied equally to AEXP and
LEXP for the first six block change cycles. In order to use the learning
effect relationship, equation 4.2 assumed each block chan_: was one year
in length. A change to the block change duration would require

additional calculations to maintain the documented relationship.

LE=(BC)3™* Eq. 4.2
where LE = learning effect
BC, = block change number
i=12 .6

The second temporal effect encountered in support was size growth
in the software being maintained. As software was modified, it usually
grew in size. Size was important to track because estimators needed to
know how much of the target computer memory remained unused in order
to estimate an increase in the support effort per line of code. A larger code
size required more effort per line to support.

The prototype model encompassed a method to increase the size of
the support code in a realistic manner. The term realistic means that the
model complied with the constraint that size cannot grow beyond 100%
memory capacity. Once software grows to over 95% of available memory,
the model limited the size growth for successive block changes to one-half
the remaining memory. Therefore, in later block changes, the software

size grew very slowly and asymptotically towards 100%.

4.11

The specifics of size growth were implemented as a two part
process. First, an estimator provided a development total code size and a
memory utilization percentage. Next, the number of deleted and added
lines of code for each block change were respectively subtracted and added
to the previous block change size. The result was a changing total code
size that typically increased in size since the number of added lines was
usually greater than the number of deleted lines.

As the total size of the code increases, it can affect the next set of
temporal effects, memory and throughput utilization. The prototype model
treated these two effects as one because of their common characteristics.
As the utilizations increase, they both increase the required support effort
and they both are limited to 100%. Aircraft avionics systems have definite
memory and throughput limits that can't be exceeded. As the memory and
throughput limits are approached, support programmers must carefully
engineer the code modifications to remain below the memory and
throughput limits. When adding code near the memory and throughput
limits, software support programmers must choose size efficiency over code
simplicity and clarity. The resulting code is more complex than code at
lower memory and throughput limits. This complex code requires greater
intellectual investment and more time to create. The code is also more
error prone. The prototype model included both temporal effects in two

ways. The model set how the level of utilization affects one particular

4.12

block change and how the utilization level changes during sequential block
changes.

For one particular block change, the levels of memory and
throughput utilization could affect the original COCOMO attribute
multipliers of the main storage constraint (STOR) and the execution time
constraint (TIME) (see Table 2.7). Boehm defined the STOR rating as a
percentage of main storage expected to be used by the subsystem and any
other subsystems consuming the main storage resources (Boehm:410) and
the TIME rating as the percentage of available execution time expected to
be used by the subsystem and any other subsystems consuming the
execution time resource (Boehm:401). Both of the..: definitions fit nicely
with the objective of describing the effects of memory and throughput
utilization'. Although Boehm already quantified the affects of these
attributes with a set of four discrete multipliers, the prototype altered the
development attributes with a continuous function based on the utilization
percentage. The coefficients and exponents of the memory fill and timing
fill relationships of the design and development phases from the SYSCON
report (Table 2.3) were averaged to produce a composite relationship that
covered support design and development. The resultiﬁg equations
provided a multiplier to apply against the development STOR and TIME

attributes as the memory and timing percentages varied during block cycle

! The prototype model considered available throughput as the mathematical inverse of available execution
time. Both degrade at the same rate.

4.13

changes. Both equations 4.3 and 4.4 produced a multiplier of 1.0 at a
utilization rate near 62% utilization, so the model used 65% utilization as
the threshold for applying the equations. At utilization rates of 65% or
more, the equations produced multipliers greater than 1.0 to represent an

increased effort.

ME=1.905 (% MemoryFill/100)'4* Eq. 43
where ME = memory effect
TE=1.82(% Throughput/100)'3% Eq. 44
where TE = throughput effect

At 95% memory and throughput utilization , oth equations combined to
yield a 3.01 multiplier. This 3.01 value implied that the effort required at
95% utilization rate is about three times greater than an effort at less
than 65% utilization. This 3.01 value also compares favorably with the
95% result of 3.78 shown in Table 2.4.

Once the memory and throughput utilization effects were
established, we determined how the utilization would vary from block
change to block change. Because of an absence of historical time-series
utilization rates for software support, the érototype substituted a simple
rule: both memory and throughput utilization varied directly with size
growth as described above. Although this rule applied to memory
utilization, it did not precisely describe throughput utilization. For

throughput, The model accepted this imprecision in order to keep the

4.14

model simple. However, since neither memory nor throughput utilization
can exceed 100%, the prototype limited utilization growth to one-half the
remaining utilization when utilization exceeded 95%.

Size growth, along with dwindling available memory and
throughput, also contributed to the fourth bath-tub curve effect, design
deterioration, We prererred the term design entropy although none of the
literature reviewed used this term. The word entropy highlights an
irreversible nature of design degradation as code is iterated through
multiple block changes. We suspected design entropy was primarily a by-
product of making adaptive changes to software. Later in the PDSS life
cycle, as memory and throughput reserves dwindle, design entropy can be
accelerated by the necessity to code for efficiency instead of simplicity.
Efficient and complex code often leads to complex and degraded designs.
Another contributor to design entropy could occur from poor software
engineering practices during PDSS. Whatever the cause, the result was
the same. The design lost flexibility, and the original structure of the
software decayed as changing requirements are implemented. How
quickly design entropy affected support depended on the original design.
Simple, well-engineered, and well-documented code that is built and
maintained with object oriented or structured design techniques should not
show the effects of entropy as early as complex, poorly-designed code

(spaghetti code). We faced a challenge trying to express and quantify this

4.15

concept. As a minimum, two components were needed - entropy timing
and magnitude of impact.

With no data or literature quantifying the timing or magnitude of
design entropy, we resisted the temptation to create a relationship out of
thin air and, instead, left it out of the model. The model relied on the size
growth and the reduction of available memory and throughput to capture
the upward sloping portion of the bath-tub curve.

When all of the effects from this section were combined into one

equation, the result was equation 4.5.

MM, ...~(BCT) a(KDSI)* () »LE+ME+TE Eq. 4.5

where MM = estimated man-months
BCT = block change traffic
a = calibration coefficient
b = calibration exponent
KDSI = thousands of deliver sources lines of code
I1= product of the COCOMO multipliers
LE = learning effect
ME = memory effect
TE = throughput effect

Hypothesis 2: Functional Calibration to Improve Model Acouracy
Although equation 4.5 adequately described the general shape of a
time-series of support efforts for a single unit of code, the coefficient
parameter, ¢, and the exponent parameter, b, needed accurate values so
the equation could produce the best estimates possible. Finding the best

parameter values for a particular scenario was done through calibration

from historical data. It was possible to calibrate equation 4.5 using the

4.16

calibra.tion technique outlined in Chapter II (equations 2.14 and 2.15) by
including BCT as shown in equation 4.6.

MM,

b B e ———
aKDSI) 7 BeT,

Q, Eq. 4.6

where a = coefficient parameter

b = exponent parameter

i =1, 2, .. number of block changes

KDSI = thousands of DSI total code size

MM = man-months of effort

BCT = block change traffic

~ I1 = product of adjustment factors and temporal effects

Q = temporary variable for future equations
To begin the calibration process, the prototype model used a set of
historical MM, BCT, and [] values to calculate a set of Q values. Each Q,
value represented an effort for correlation against a corresponding block
change size. Although KDSI; and @, in equation 4.6 appeared to correlate
total size and effort, the real correlation was between EDSI and effort.
BCT, which was contained in EDSI, could be considered as a scaling factor
to make @; appear as a typical development magnitude for the total
development size. (Remember the MM; value only included effort for a
block change, not an entire development.) In order to correlate these

points linearly (no exponents), equation 4.6 can be transformed with a

logarithmic function to produce equation 4.7.

4.17

log(a) +b+log(KDSI)=log(Q) Eq. 4.7

Equation 4.7, in the form of a line, permitted a least squares regression to
a set of data points. The results of this regression were values for a and b
which describe the line that best predicts a @ value (effort) given a KDSI
value (size).

The continuation of the calibration process included building
calibration equations similar to those from Chapter II (equation 2.14) to

arrive at equation 4.8. (Remember that @ contains BCT.)

ay=n

n
a,= I log(KDSI),
i=1

i 2
2 (log(KDSI)) £q. 48

-~

M

a2 =
n
dy= T log(Q)
i=1

n
d,= I log(Q,jlog(KDSI);
i=1

where a, = the number of data points (block changes)
a,, a, = temporary variables for future equations
d, d, = temporary variables for future equations

Next, equation 2.15 can be applied to calculate a and b.

Sy,

8y, -0y

b= a,4y-a,d,
ag,-a;

log(a)=
Eq. 49

4.18

From a mathematical standpoint, equations 4.8 and 4.9 were similar
to the COCOMO calibration equations from Chapter II and were
straightforward to calculate. Keeping the exponential form of Boehm's
equations, these equations captured a relationship between the size of the
baseline code (KDSI) and the size of the change being made (EDSI). This
relationship implied that supporting a given number of DSI in a large
program required more effort than supporting the same number of DSI in
a small program.

Interpreting the meaning of this support calibration depended on
the data used to calibrate the model. If data was from a single PDSS
lifecycle, then the calibration would capture the long-term, stable
characteristics within that lifecycle. We labeled this case a horizontal
calibration. During a development time frame, this type of calibration
would be useful for predicting total lifecycle cost from equations calibrated
to previous support lifecycles. During a support time frame, this type of
calibration would be useful for predicting the next block change from
equations calibrated to previous block changes. However, these calibration
techniques might be inappropriate if the attribute adjustment factors did
not follow a bath-tub curve. This last scenario may be better suited for the
case we labeled as vertical calibration.

Vertical calibration uses data from the i" block change cycle from
different software products for calibration. This calibration could capture

common characteristics across similar systems at the i** block change and,

4.19

presumably, could be used for predicting the i block change cost of a
similar system. Vertical calibration is equivalent to calibrating the
development equation using development data because the historical data
comes from different software systems. However, there is no
developmental equivalent of horizontal calibration.

Which calibration works the best for a given scenario? There was
insufficient time or data to experiment with horizontal versus vertical
calibration. However, given sufficient data, this comparison could be
accomplished using Hypothesis 2 (functional calibration of existing models)
methodology and the model comparison methodology.

In an attempt to validate the calibration algorithm, we entered
Boehm's database (Boehm:496) into the prototype and calibrated each
mode. A re-derivation of the coefficient and exponent values for all three
COCOMO modes was expected. However, as shown in Table 4.2, the
results did not duplicate the coefficient or exponent for the organic and
semi-detached modes. The embedded mode values were much closer.

Table 4.2

Calibration Comparison

——e

IF Mode Boehm Parameters Prototype Parameters
Organic 32 1.05 4.3000 0.9337

|| Semi-detached 3.0 1.12 3.1855 1.1033
Embedded 28 1.20 2.7838 1.2090
All data - ~ 2.8309 1.1581

One possible reason for the differences shown in Table 4.2 could be
rounding or truncation of the database numbers published in Boehm's
book. For example, project numbers (PN) 4, 8, 14, 16, 20, 24, 31, 33, 34,
and 35 had adjustment factor products (IT) more than 1% different than
the actual product of the adjustment factors (LANG through RVOL)
(Boehm:496). Although the difference seemed small, these differences
were well within the resolution of the published numbers. The different
results could also be a result of Boehm adjusting the coefficients and

exponents based on his personal knowledge and experience.

Data

In order to calibrate the model equations, we attempted to obtain
actual historical data from several aircraft support lifecycles. The data
collection efforts began in October 1992 by contacting representatives from
each of the combat aircraft listed in Chapter I (page 1.12). The initial
contacts, from the System Project Offices (SPOs) at Wright-Patterson AFB,
lead us to the Air Logistics Centers at Warner-Robins, Ogden, Oklahoma
City, and Sacramento. Except for Warner-Robbins, we established good
contacts at the ALCs, mailed to them our data forms (see Appendix B),
and received a 75% response rate against our targeted platforms. The
forms were mailed to ALC engineers involved in software support
management for the F-16, the B-52, the F-111, and the B-1. We received

no response for the B-1 but received an unsolicited response for the E-3.

Data Collection. Conversations with the ALC contacts indicated

that the bulk of the needed data resided in local databases. Despite these

promising beginnings, the data received was surprising. Given the slow

response time and the sparseness of data, the local databases apparently

were not readily accessible or useable and did not contain the needed data.
Eleven data points were received, but only four were useful.

Table 4.3 is a summary of the change size/effort data received. The

data points are shown in random order and are labeled A - K.

Table 4.3
Actual Data
LABEL SLOC SLOC AT MANHOURS | DURATION
CHANGED START OF (MONTHS)
CYCLE
A not available not available 33,405' 13’
B 32,300 >500,000 19,500 12
c? 0 13,400 2,976 16
D 13,000 not available 17,580 12
E? 600 13,000 1,275 11
F 36,626 not available 414,484 29
G? 250 10,000 3,000 11
H not available not available 27,622 12
| not available not available 10,175' g8’
Ny 20 41,000 2,325 1
K 31,888 not available 398,105 43’

1 .
Estimated data not actual.

2 Usable data points.

Since some participants requested that their data not be traceable to them,
the original data sheets were not printed in this thesis.

Only four of the eleven data points contained suitable size and effort
information. Unfortunately, four data points were insufficient to validate
Hypothesis 1 (functional bottom-up construction of a software cost
estimation model) or Hypothesis 2 (functional top-down calibration of a
statistically-based software cost estimatior model). In most cases, sample
sizes of at least 10 or more are necessary to obtain meaningful statistical
confidence intervals and to evaluate the statistical measures in Chapter
III. Obtaining lérger samples required generating a sample database.

The last historical data came in May 1993. At that time, we stopped
trying to collect additional data to validate our hypotheses and redirected
our efforts toward generating sample data to demonstrate the hypotheses.

Data Generation. To generate realistic data for the support model,
we invoked the model itself. The model, an enhanced adaptation of
Boehm's COCOMO maintenance model, could be considered a
mathematical function with multiple inputs (size and attribute factors)
and a single output (block change effort). The basic concept was to
generate a perfect set of output-input pairs and then add a known
variatiqn onto the effort. The resulting fictional sample could then be used
to demonstrate both hypotheses.

Starting with the basic concept, we programmed a software module

that used the our support equations to generate random data points. The

4.23

first step was to generate values simulating the result of a random
development product. This was equivalent to generating all the values for
the right-hand side of the intermediate COCOMO maintenance equation
discussed in Chapter II (equation 2.11). The desired effort-size
relationship was the basis for selecting values for a coefficient, a, and an
exponent, b. Next, a random number function produced a development
product size, KDSI, and each of the adjustment attributes, C;;. The
prototype calculated three temporal effects, LE, ME, and TE, based on the
block change number and then scaled the AEXP, LEXP, STOR, and TIME
adjL;stment attributes. After scaling, the prototype applied three
percentages, representing the size of added, modified, and deleted code for
a block change, to the KDSI size to produce a block change size in units of
KDSI. The model then weighted these three sizes according to equation
4.1 to arrive at EDSI. Next, dividing EDSI by KDSI produced BCT. At
this point, all the values required for the right-hand side of equation 4.5

were calculated, so the prototype calculated the MM, labeled MM, for

stimated?
the left-hand side of the equation.

By calculating an effort for each set of inputs associated with a
block ckange, the prototype completed the first half of the basic concept,
generating a perfect set of output-input pairs. For the second half of the
basic concept, adding a known variation onto the efforts, the prototype

applied a random number function. The function accepted the mean and

standard deviation of a desired normal distribution and returned an

-4.24

appropriate random deviate. A mean of zero for all deviate calculations
insured an even spread of positive and negative deviate values. Our first
inclination was to add the resulting deviate directly to the estimated block
" change effort, but we realized that adding deviates to effort in the
exponential domain was wrong. Since calibration is based upon a linear
regression in the logarithmic domain, the perfect input-output pairs had to
be converted to the logarithmic domain (as shown by equation 4.10) before

adding the deviates.

In(MM._ _,,_ ...) =In(BCT) +In(a) +b+In(KDSI) + ZIn(I) Eq. 4.10

After generating a normally-distributed random deviate, the prototype
added the deviate to the converted block change effort. In a sense, adding
the random deviate is like adding noise to a perfect block change effort in

order to introduce some realism. The resulting effort was labeled

MM

8

imulated @S ShOwn in equation 4.11.
In(MM_, .00 -In(MM,_, ...) +noise Eq 4.11

Finally, the prototype model transformed the randomized effort back to the
exponential domain by taking the inverse of the natural logarithm (e).
The generated data could now be treated as historical data for the

calibration and evaluation of the model.

Demonstration

Using the data generation methodology, the prototype model created
data to demonstrate both hypotheses. By programming the methodology
into software using the Visual Basic language, the model created the data
sets printed in Appendix F. The data requirements of the hypotheses were
different and necessitated two different databases. The simplest database
supported the second hypothesis, functional calibration. The more complex
database supported the first hypothesis, construction of a bottom-up cost
model. The following description for each database generation begins with
the Hypothesis 2 (functional calibration) database generation.

Hypothesis 2. The functional calibration hypothesis was
demonstrated using families of data points with each family member
generated from the same coefficient/exponent combination. Using the
Create Database function in the software, the prototype generated five
families of 20 data points each. Each family had a different
coefficient/exponent combination. By selecting a family or group of
families, we were able to simulate how functional calibration might
improve software effort estimation and demonstrate the model comparison
methodology described in Chapter III.

The prototype constructed the composite database of block change

families with inputs shown in Table 4.4.

Table 4.4

Input Parameters for Composite Database

Parameter Value
Number of Block Changes per Category 20
Development KDS! Size 100
Adjustment Factor Standard Deviation 0.17
Percent Added 6
Code Affected]
per Block Change Percent Modified 10
Percent Deleted 2
Percent Std Dev 0.3
Coefficient 2.40
Communication
Identification Exponent 1.05
Effort Std Dev 04
Coefficient 2.70
Navigation
Sensors Exponent 1.16
Effort Std Dev 04
Coefficient 2.70
Core
Avionics Exponent 1.16
Effort Std Dev 04
Coefficient 3.10
Electronic
Combat Exponent 1.28
Effort Std Dev 3
Coefficient 3.20
Offensive
Sensors Exponent 1.36
Effort Std Dev 0.4

Note that Table 4.4 navigation and core avionics categories were set to the
same base equation (coefficient and exponent) and that the standard

deviation for the electronic combat category was much higher than the

other categories. After accepting data according to the inputs in Table 4.4,

the prototype produced the data shown in Figure 4.3.

601.9 o
526.61 + C/ID
451.4+
X NAV
376.2+
Q
MM
300.9+ A CORE
225.7+
A y ;] &
150.5+ , D o O y o EC
o a
75.21 e+ s
oo’m‘&j&%’@ff ﬁwa PN , © OFF
8 10
Size in EDSI

Figure 4.3 - Composite Database

The data in Figure 4.3 had many sources of variation. The first source of
variation came from the attribute adjustment factors, which accounted for
a large portion of the total variation. The second source of variation came
from random proportions of the block change code additions, modifications,
and deletions. The last source of variation came from the effort standard
deviation assigned to each category. The lone data point from the
electronic combat (EC) category was the result of the high variation
assigned to this category.

When the variation from the attribute adjustment factors was

removed, the prototype produced a normalized database. With the product

of the adjustment factors (1) divided out (normalizing), the undérlying
relations of the data were much easier to see. Figure 4.4 shows the data

from Figure 4.3 after normalization.

601.97
526.64 + C/ID
451.41+
<« NAV
376.2+
MM 300.9+
’ & CORE
225.7+
150.5-} 2 O -~ EC
80 - .
o W
8, & Lo
6 8 10
Size in EDSI

Figure 4.4 - Normalized Composite Database

Notice that many of the data points if Figure 4.4 have aligned along
imaginary lines. We exploited this tendency by separating out these
points and recalibrating to only these points. Also, many of the data
points have lower effort values because they have a total product
adjustment (IT) greater than 1.0. To compensate for the change in scale,
the prototype enlarged the data scale by reducing the maximum plot

magnitude of the y-axis to 150 resulting in Figure 4.5.

4.29

150.01 > o
13131 - + ¢D
112.5¢ d e
X NAV
93.81 . o
MM
75.0 o o o A CORE
56.31
@‘-‘% 2R
375+ g g o an Y > EC
RIS S
0.0 2 ‘ 1 . , O OFF

Size in EDSI

Figure 4.5 - Zoomed and Normalized Composite Database

Figure 4.5 shows the grouping or family relationship more clearly than
Figure 4.4 does. The separate families of categories reflect the
stratification of the data.

If the data were separated into the different categories and plotted,
estimators could easily spot the multiple stratifications. But what if all
the data were assumed to be in the same category? If this were true,
estimators might be inclined to see a single exponential relationship
instead of multiple ones, especially if the variance (spread) of each
category was larger. Without further examination, estimators could
calibrate the entire set of data and produce a single coefficient and
exponent pair for a single model. Calibration of the entire data set yielded
a coefficient of 2.43 and an exponent of 1.23. Although an estimation

model with these parameters might not account for each of the separate

4.30

data categories, the model would still estimate more accurately than a
model that was not calibrated to the data set. Table 4.5 contains the
results of a comparison of the REVIC embedded mode model (a = 3.312 &
b = 1.20) and a model using the calibrated parameters.

Table 4.5

Statistical Evaluation of Calibration Source

Parameter R? RRMS Avg Predict %
Source MRE Value % | Improve
REVIC 0.7906 1.176 32.81 12.0 -
Data Calibration 0.8072 1.175 28.54 35.0 68%

The results in Table 4.5 demonstrated that estimating effort from
calibrated models could be more accurate than estimating from a model
that is uncalibrated. In fact, if the calibration is performed properly and
the calibration data adequately represents the estimation environment, a
calibrated model should always estimate more accurately than the same
uncalibrated one. Thus, any model that uses statistical correlation can be
improved by calibration.

By dividing the data into functional categories, estimators could
obtain more accurate coefficient/exponent pairs. For example, calibrating
the communication-identification category yielded a coefficient of 1.37 and

an exponent of 1.18 while calibrating the offensive sensor category yielded

4.31

a coefficient of 2.97 and exponent of 1.39'. These values were not the

same as those for the entire data set. Applying each of the evaluation

measurements from Chapter III produced the results printed in Table 4.6.

Statistical Evaluation of Categorical Calibration

Table 4.6

Calibration R? RRMS Avg Predict %
Source MRE Value % | Improve
Entire Database 0.8072 1.175 28.54 35.0 —_—
Database
i Comm Database 0.5236 1.506 26.86 0.0 -
1D ;
Category 0.9763 0.096 1.79 80.0 100.0
Nav Database 0.9110 0.351 9.58 75.0 —
Sensors
Category 0.9148 0.113 2.96 90.0 70.0
Core Database 0.9310 0.257 7.25 70.0 —
Avionics
Category 0.9512 0.15 2.74 90.0 80.0
I Elect Database 0.6790 1.748 44 .89 25.0 —_
Combat
Category 0.7109 1.630 37.63 50.0 60.0
Offensive | Database 0.6447 0.740 54.10 5.0 -
Sensors
Category 0.9785 0.137 9.06 75.0 95.0

Table 4.6 revealed the potential improvement in all of the

measurements by calibrating to a functional data set. Categories at the

edges of the data set, such as communication-identification and offensive

sensors, did show a pronounced improvement while other categories in the

central area of the whole data set did not show as much improvement.

! These values are not the same as the input parameters because of the effort variability introduced when
generating the data points.

4.32

After separating the categories, graphing the families, and
evaluating the statistics, it was an easy chore to determine where the
improvements were. But what about the areas where there were no
improvements? Data collection data for analysis required much effort, so
avoiding data collection for any area should save effort. According to the
graph of the data (Figure 4.5), the navigation and core avionics functions
seemed to overlap closely. Comparing the navigation and core avionics
calibration results with other categories in Table 4.7 provided some
additional clues.

Table 4.7

Category Calibration Results

Category Coefficient Exponent
II Comm / ID 1.3689 1.1845
II Nav Sensors 24279 1.1918
| Core Avionics 2.3197 1.1923
Elect Combat 1.7652 1.3969
Off Sensors 2.9665 1.3876
| Entire Database 2.4291 1.2278

Table 4.7 confirmed that the coefficients and exponents of the navigation
and core avionics categories were close to each other. Therefore, it made
sense not to collect data for these two categories separately but to combine
them into one group with a single calibration. Calibrating these two
categories together as one category produced a coefficient of 2.3925 and an
exponent of 1.1898. Neither of these new values were significantly

4.33

different from the previous values, so treating both categories as one would
not greatly affect the accuracy of any predictions for block changes in these
categories. Of course, this prediction assumed that the future behavior of
these categories would follow the past performance. This may or may not
be true, but an informed guess should be better than an ignorant one.

Another category which would probably benefit little from special
calibration attention was electronic combat. Because the variability of this
category was high, the category was naturally difficult to estimate.
Collecting extra data to enable estimators to calibrate a new parameter
pair would probably be less helpful than collecting extra data on a more
promising category such as communication-identification. The calibration
from the entire data set predicted almost as well as the functional
calibration for the electronic combat category.

For the second hypothesis of functional calibration, we have
demonstrated the main benefit of producing new prediction relationships
based upon a selected subset of data. The subset could be an entire group
of data such as avionics or subset families of a group. In either case, the
main benefit would be improved prediction accuracy. The generated
database separated a fictional database into five functional categories.

The communication-identification and offensive sensors calibrations offered
the most promising improvements and warranted their own calibration

curves. On the other hand, the navigation, core avionics, and electronic

4.34

combat categories demonstrated less potential for improved accuracy and
might be better treated as a single group.

Hypothesis 1. Functional calibration for the second hypothesis was
not the only way to demonstrate prediction accuracy improvements. By
generating data that fit the first hypothesis, construction of a bottom-up
cost model, we demonstrated another possible improvement. Creating a
database for the first hypothesis required a series of block changes for a
lifecycle. Each lifecycle had to mirror the temporal changes suggested
within the literature review. The concept of generating a series of data
points was similar to the concept used to create a single data point. The
prototype determined the effort for a particular block change size and then
added some random deviation. The wrinkle this time was to change the
support effort to match the bath-tub curve espoused in the literature.
Recall from Chapter II the four temporal effects which impacted the
size/effort relationship and made the bath-tub curve. The prototype
modeled the memory effect, throughput effect, and the learning effect but
discarded the entropy effect because there were no quantifiable
relationships for entropy. The bath-tub shaped lifecycle came entirely
from the first three temporal effects.

The prototype constructed a series database with the inputs shown

in Table 4.8.

4.35

Input Parameters for Series Database

Table 4.8

ﬂ Parameter Value
II Number of Block Changes 20
H Development Size in KDSI 100
u Development Memory Utilization Percentage 50.0
Development Throughput Utilization Percentage 50.0
Effort Standard Deviation 2.0
Adjustment Factor Standard Deviation 0.17
Prediction Coefficient 2.80
Parameters
Exponent 1.20
% Added 5.0
Percentages of Total Size R]
for EDSI calculation % Modified 10.0
% Deleted 20
% Standard Deviation 0.3

We selected the input values in order to generate a data set that could

demonstrate the effects discussed in the literature review. The resulting

data can be found in Appendix F and in Figure 4.6.

$ 10 is
Block Change Number

Figure 4.6 - Series Block Change Database

4.36

The most noteworthy characteristic of this data was the initial decrease in
effort during the first six block changes followed by an increase in effort
towards.the later block changes. By normalizing the data to remove the
variation induced by changing adjustment factors, the prototype more

clearly displayed the temporal effects in Figure 4.7.

250~
200+ -
‘ A
‘ P
150+
a
MM A
; X 3 CORE
100+ x ¥
P Al &,X‘x
04 LR S N g
|
!
0! ;
0) 10 15 »
Block Change Number

Figure 4.7 - Normalized Series Block Change Database

Figure 4.7 demonstrated what happened to avionics support effort as the
learning effect died out and was overtaken by the effects of depleting the
remaining throughput and memory. The effort for the last block change
was more than double the effort from the first block change. If the
temporal effects were accurately modeled, then it was easy to understand
why models which don't include these effects could be less accurate. A
model that simply assumed a constant level of effort could not account for

learning or any effect of growth.

4.37

Although the data in Figure 4.6 does not deplete all of the

remaining memory or throughput, a data set which did approach the 100%

limits demonstrated the value of controlling growth. By adjusting the

percent added code from 5% to 6% and holding the other inputs constant,

the prototype demonstrated the growth effects as graphed in Figure 4.7.

400y
300 +
MM ., y 5 core
| e
i a /
100+ "}
x4 Voa-
Staaaad
% L] 10 15
Block Change Number

Figure 4.8 - Support Data at 6% Added Code

The effort leveling during the last three block changes demonstrated the

effect of memory and throughput utilization approaching 100%. Operating

in this area is very costly. Figure 4.9 displays the memory utilization for

separate examination.

100
«
&
) X&A’d &4
o0t =l
Mem % | &t
A CORE
0
0}
% § i s
Block Change Number

Figure 4.9 - Memory Utilization Growth

4.38

The memory utilization grew steadily until reaching about 95% where it
began to taper. The throughput utilization exhibited a similar growth
pattern. Although the consumption of these two resources significantly
altered the later portions of this support lifecycle, the high effort was
partially offset by the learning which occurred during the early portion of
the lifecycle. Figure 4.10 displayed the values for the language experience

(LEXP) adjustment factors as altered by the learning effect.

107
0.8+ A\A‘
a,
R S W W W Wl - Wy
061
LEXP
A CORE
044
021
0.0 ; - + J
0 [10 15 20
Block Change Number

Figure 4.10 - Learning Effect for Language Experience

The learning effect was manifested only during the first six block changes,
and after that point, it did not help reduce the require effort. Since all
three temporal effects influenced effort by altering adjustment factors, it
was worthwhile to examine the total contribution of the temporal effects
by graphing the adjustment factor products (IT) for successive block

changes. The products are graphed in Figure 4.11.

4.39

3y

204 Vol
/A’
LS A
st P
Pl &
\\%(‘(((‘A/K h

104
oSt
805 3 % 15]

Block Change Number

Figure 4.11 - Block Change Adjustment Products

The shape of Figure 4.11 was the same shape of a graph of normalized
efforts. This match was not surprising since the change in support effort
came entirely through the change in adjustment factors.

After reviewing the results of the software, we concluded the
prototype model was an excellent tool to demonstrate the hypotheses.
Although actual data would have enabled the software to validate or
disprove the relationships, the prototype demonstrated a way and provided

a tool for future researchers to make these conclusions.

REVIC/Prototype Model Camparison

Despite the utility of the prototype in demonstrating the hypotheses,
we also compared the order of magnitudes of the effort predictions from
the model against well-established models. Since the prototype and
REVIC models are both adaptations of the COCOMO model, it made sense
to compare the outputs from the REVIC model, the COCOMO model and

the prototype model. The comparison expanded to include the SASET and

4.40

SEER models because those models were readily available. The
comparison was simplified by constraining all the adjustment factors in
the COCOMO-based models to nominal values (1.0). The inputs of the
other models were also nominalized to the extent possible. Nominalizing
the model permitted comparing of the results and avoided accounting for
model-specific differences. Nominalization also reduced each of the
COCOMO-based models to forms similar to the basic COCOMO model
presented in Chapter II. The comparison results are shown in Table 4.9.

Table 4.9

Support Model Comparisons

REVIC | COCOMO | SASET | SEER | Proto Proto

Block 15 15 15 15 15 15
Changes

Devel 100 100 100 100 100 100

nputs | _ Size KDSI KDSI KDS| | KDSI | KDsI KDSI
Block | 10% 10% 10% 10% | 0% add | 6% add
Change | ACT ACT AcT | AcT | 20% md | 12% md

Size 0% del | 2% del

Outputs Effort

1 ™M) | 1248 83.19 6372 | 39384 | 849 84.9

2 108.2 83.19 5412 | 24336 | 654 68.6

3 95.7 ‘ 462 | 16778 | 562 618

4 83.2 . 3756 | 167.78 | 505 58.1

5 31.44 . 464 56.0

6 28.8 . 433 54.9

7 26.16 . 433 57.5

8 22,68 . . 67.9

I .

13 : . 8.76 : : 146.7

14 . . 6.12 . . 171.1
15 832 83.19 348 | 16778 | 433 199.6

4.41

The comparison results printed in Table 4.9 indicated that the prototype
model predicted efforts that were neither the highest nor the lowest of the
well-established models. Thus, the prototype generated effort values

within an order of magnitude of the other models.

Condusion

Although we would have preferred using actual data, we
accomplished all of the objectives using generated data. Demonstration of
Hypothesis 1 began by modeling the current block change process using
object oriented design techniques. The block change process model and the
literature review provided the foundations for creating a software
computer model. The prototype demonstrated the improved accuracy of a
bath-tub shaped series of block changes and an order of magnitude
accuracy compared to COCOMO, REVIC, SASET, and SEER. These
actions satisfied the first three objectives for Hypothesis 1 as stated in
Chapter 1.

We also achieved the first objective for Hypothesis 2 as stated in
Chapter I. The prototype demonstrated the improved accuracy of
functionally calibrating software support estimation models. The
remaining objectives for both hypotheses are recommendations that are
covered in the next chapter.

Lack of data was an unfor.seen obstacle that we overcame with the

prototype by generating fictional data. Actual data existed but not in a

4.42

readily accessible form. The lack of data forced a deviation from the

original concept of validating the model to demonstrating the prototype.

4.43

V. Conclusions & Recommendations

Chapter Overview

In this chapter, we present conclusions that were supported by our
research. Also presented are recommendations for improving software
support estimation. The conclusions and recommendations are grouped
according to the topics of data: Hypothesis 1 (functional model
development), Hypothesis 2 (functional calibration), and the model
comparison methodology. The chapter concludes by identifying other

topics for additional research.

Data

Condusions. We were unable to find sufficient data through direct
collection and through literature research to confirm or refute the
hypotheses. However, our efforts supported two conclusions. The first
conclusion was that the efficiency of an SSA will not remain constant over
the PDSS lifecycle for aircraft avionics software. The second conclusion
was that a software support database needs to be constructed to help
study long-term SSA efficiency. Each conclusion is discussed below.

The nature of the software support process coupled with the
constraints imposed by a target computer suggested that a bath-tub
shaped curve existed which was not captured in REVIC, SEER, or SASET

maintenance models. However, the literature confirmed the existence of

5.1

this curve. There were four factors that affected the shape of this curve.
The first was a learning effect acquired through exposure to the software.
The second was simple size growth during the PDSS cycle. The third was
the loss of available memory and throughput as size increased. The fourth
was design entropy caused by repeated changes to the software. Further
research into each of these factors could lead to understanding the
temporal effects and to identifying any interdependencies.

The second conclusion was the need for a support database to
quantify the four temporal effects. A database is a prerequisite to support
model development and PDSS estimation improvements. The data
uncovered during the research was insufficient to validate the hypotheses
and forced the generation of sample data. Until sufficient data is collected
for analysis, no further progress can be made on either hypothesis, nor can
an evaluation of the existing models be accomplished. The specific
attributes of the database are discussed in the next section.

Recommendations. Building an adequate support database will be a
challenge. The database must have time series information on a sufficient
number of software projects to allow the revision and calibration of present
models to a support environment. The database must also contain high
quality information and requires a well-defined data collection plan that
must be strictly followed. Each database element must be precisely
defined to reduce confusion during collection and interpretation. Besides

these general characteristics, we made specific recommendations about

5.2

collecting size and adjustment factors. Size, the most important
parameter, will be discussed first.

Good si.ze data is the cornerstone for a good PDSS database. As
mentioned in Chapter II, all the other factors simply adjusted the effort
estimate obtained from size. Support size was similar to development size,
but there were some key differences. Both support and development size
required a standard definition. It is not sufficient to simply ask for size in
SLOC, KDSI, function points, or any other size units without a standard
definition of the metric. Implied in this statement is a software language
dependency; the definition of size is likely to be highly language
dependent. However, the goal is to define the metric so that two different
estimators will generate the same size count for a given piece of software.
One solution would be to embed the sizing rules into a software tool and to
use it on each support tape entered into a PDSS database. This would
provide an accurate starting size for each block change. Now given the
starting size of a baseline, estimators could calculate the effort per EDSI
observed in the block change. At this point, the recommendations diverge
from sizing techniques common to development.

Support software size has an additional measurement, the size of
the changed code, that development size does not have. Software support
estimates should derive effort from the size of the changed code as well as
the total code size. A consistent way to measure the change size would be

to compare a baseline tape with a tape produced after a block change

5.3

cycle. All of the code that was added, deleted, or modified must be
counted. Again, the counting metrics must be defined clearly so they can
b.e applied uniformly. Of all the possible size measures, SLOC (or KDSI) is
a measure that is usually familiar to software engineers since they usually
work with lines of code (or source instructions). Therefore, we recommend
that a set of language-specific definitions for added, deleted, and modified
SLOC be created and codified into a standard software tool for measuring
the size of baseline code and for measuring changes to the code. Only size
measured by the standard tool should be allowed into the PDSS database.
Along with size data, adjustment factors need to be gathered to
account for other variables present in the block change. Until a better
support model is available, we do not recommend a standard set of
adjustment factors for data collection. In the mean time, collecting all of
the support adjustment factors from the Air Force recommended models
(REVIC, SASET, SEER, and PRICE-S) should suffice. We made no
conclusion which models or attributes to drop from the PDSS database.
However, three critical areas should be included in any database. As with
size, each of these areas needs a defined metric to ensure data consistency.
The first critical area is the experience of the analysis, design, and coding
team. The team size and average experience in months at the start of the
block change cycle should be part of the PDSS database. This information

is needed to study the learning effect.

5.4

The second critical area is the remaining memory and throughput.
Although measuring these attributes can be complex and highly machine
dependent, the important characteristic to capturé is the designer's
perception of remaining memory and throughput. It is equally vital to
record any hardware changes that increase available memory and
throughput. Expressing the available memory and throughput as a
percentage is reasonable given the complexity of the measurements.

Even more complex to measure than remaining memory and
throughput is the third critical area, design entropy. Although all the
factors that contribute to design entropy unknown, one cure for design
entropy is to re-engineer the software (Sittenauer:7-10). Another less
drastic cure is to restructure the software (Corbi:294-306). Unfortunately,
no single metric existed that captured all of the software attributes that
restructuring and re-engineering restore. But there are many metrics that
can capture a subset of those attributes (Oman:337-344, Fenton:150-259).
The question is which metrics capture design entropy with reasonable data
collection. We recommend that the PDSS database retain the baseline
code and documentation for each block change. We also recommend
further investigation into the nature and measurement of design entropy
to define a set of metrics for inclusion in a PDSS database.

A PDSS database is not the only method of researching maintenance
productivity over time. Further literature research into the learning

curve, memory/throughput effects, and design entropy effects may prove

5.5

fruitful. There may be other factors not identified in this thesis that

contribute to the bath-tub temporal effects.

Hypothesis 1: Functional Construction of a Software Estimation Model

Condusions. Describing the block change process using software
design tools provided excellent results. The object model labeled the
agents involved in the PDSS environment while the functional model
described the subprocesses within the block change process. The graphic
nature of our object model allowed quick assignment of the COCOMO
effort adjustment factors to specific agents in the PDSS environment,
while the graphic nat' re of the functional model allowed rapid
identification anu resolution of differences between blgck change process
descriptions. The result was a product that was traceable to MIL-HDBK-
347 and to previous work done by Sacramento ALC. The next task was to
functionally construct a software estimation model based on the block
change process described by the process model.

The concept of a functionally constructed software estimation
model, given a functional description of the process, is to estimate each
function (subprocesé) individually and then sum the total. Once the block
change process was correctly depicted, the subprocesses best represented
by the COCOMO maintenance model were included in the prototype
software. The prototype included only the "develop changes" subprocess

because there was insufficient data to include other subprocesses.

5.6

Estimators in the field should included their own selection of subprocesses
based on the data available for calibration and for other estimation
methods (analogy or bottom-up).. Having identified what part of the block
change process the prototype would address, we next manipulated the
COCOMO adjustment factors to mirror the bath-tub curve supported by
literature.

The software prototype successfully created a bath-tub curve over a
series of block changes. The fidelity and accuracy of the prototype
compared to an actual series of block changes was unknown. With no
usable data to test against the prototype, we could only assert that the
prototype represented the temporal effects of software support better than
the ACT based models of REVIC, SASET, and SEER did.

Recommendations. We have two recommendations regarding the
prototype model. The first is to validate and calibrate it with quality data
as soon as possible. This is necessary to both confirm the existence of the
bath-tub curve. Once the prototype is validated and calibrated, the second
recommendation is to prompt model designers to update the existing

support process models to incorporate a bath-tub curve.

Hypothesis 2: Functional Calibration to Improve Model Accuracy
Condusions. Calibration of support (or development) estimation
models is essential. The closer the calibration data matches the expected

system, the closer the estimate should be. The importance of proper

5.7

calibration is under emphasized. Unfortunately, calibration for support
models is not as simple as calibration for development models.

Support mode.l calibration models is feasible and can take two forms,
horizontal and vertical. Each form takes a different temporal slice of the
PDSS lifecycle. Horizontal calibration captures all of the long-term, stable
characteristics of a PDSS lifecycle. This is critical for estimators to
understand and is the key to identifying unique adjustment factors for an
SSA. Long-term calibration may alleviate the need for some of the
adjustment factors. Models do not need variables that account for
attributes which remain constant over the long-term. Vertical calibration
is similar to developmental calibration. Each uses the i"* development
cycle from a number of systems to capture those processes common across
those systems for that particular cycle.

Recammendations. The first recommendation to include ease of
calibration as a criterion to judge estimation models. A model that cannot
be easily calibrated loses much of its utility. If a model can't be easily
calibrated, then the estimator must know what data was used to calibrate
the model originally and realize that estimating effort outside of this data
domain is likely to be inaccurate.

The second recommendation is to use models that can be calibrated
in a repeatable manner. One test of model calibration is to use the

calibration procedure with the original data to see if it is repeatable. If

5.8

the recalibrated model doesn't match the original, then there is a serious
problem that needs resolution before using the model.

The third recommendation is to avoid using a model without
understanding how it was calibrated and with what data. This
information is vital to understanding what bias might exist in an estimate.
This is a serious problem with proprietary models with no simple
solutions. However, a quality Air Force database can help solve this
problem. Given a quality database, we recommend calibration of a model
to that database prior to estimating, especially if the model's calibration
database is unknown to the estimator.

Our fourth recommendation is to train estimators. Estimators need
to be trained how to calibrate the models, especially if the models use a
complex calibration procedure. Again, a readily available database is
needed before training in model or else calibration will be ineffective.
Additional training on the nature of software, software metrics, and the
processes used to create software should help estimators create better
estimates. If nothing else, the training will help software engineers and
estimators communicate better to improve estimation.

The final recommendation centers is to exploit the PDSS database
when it becomes available. Long-term data from a PDSS database will
highlight factors that are best captured under calibration. Using analysis
of variance (ANOVA) techniques on all the factors should reveal those

adjustment factors that are sufficiently stable over time to be firmly

5.9

captured in calibration. This calibration should reduce the number of

variable factors that need to be maintained in the database.

Future Research Topics

The single most important research topic is block change size
estimation. Size is the driver of all the Air Force recommended models.
Further research could determine the proper weighting for changed lines,
added lines, and deleted lines to produce a support size with the highest
correlation to support effort. Researchers also need to investigate better
methods of size estimation in preparation for a block change since block
change efforts do not come from measured EDSI inputs but from estimate
EDSI inputs. Better effort estimates require adequate models and qualit.y

size estimates.

Summary

While software support estimation is a fertile field for future
research, the key to future research is in creating a support database.
Once a large enough database is gathered, the current generation of
software support models can be calibrated and validated to specific
environments. Estimators can make further improvements to the current
estimation models for avionics software support by incorporating temporal
effects such as learning, size growth, memory/throughput growth, and

design entropy.

5.10

In this thesis, we reviewed the current literature dealing with
software cost estimation models and the software support environment.
We also presented methodologies to document the su‘pport process and to
compare software cost estimation models. Furthermore, we created a
software prototype that embodied the PDSS lifecycle as described in the
literature. The prototype generated data to demonstrate how current
software cost estimation models could be improved from two functional
points of view, functional bottom-up model design and functional top-down
model calibration. We demonstrated that both techniques can improve
cost estimation accuracy and provided recommendations for data collection,

model improvement, and future research.

5.11

Appendix A

Object Oriented Model Notation Summary

Al

Notation

Ciass Name
attribute 1
attribute 2
attribute 3

IM!Q__

——

Subclass 1 Subclass 2

Class

Assembly Class

Part-1-Class Part-2-Class

Class

Inheritance

Multiplicity
(exactly one)

Multiplicity
(zero or more)

Aggregation

Example

Ecp
Cost

Schedule (SCED)
Resources

User

TZ_T

Field MX l Fliers

Personnel

Speed, TIME
Memory, STOR

VIRT

Change/Problem
Report
Size Estimate

Test Assets
Description

Priorit

JestPlan
Test Schedule

Ground Test Flight Test
Plan Plan

Figure A.1 - Object Model Notation

A2

Category

Notation Example
N .
Input Approved ECP
N ~N
Process Develop
Name Process Changes
Output Test Tape
N
//_\\
Output ccB
Process) Data Flow |\ Process
\ Data Name Between Approved ECP
Processes
Input Develop \
Process Changes /
\ /
Name of Product
Data Store Data Store Baseline
Process
Name Access & Update
Data Store
data Current Baseline
Data Product
Store Baseline
—1 Actor —| USER
source data . Actor Obj ects Need Date 4
as source or //
sink data sink of Data

Operati/onal Tape

Figure A.2 - Functional Model Notation

A3

Appendix B

Data Collection Forms

B.1

Q)

b)

<)

[+)]

o)

Oata Collection Form

Name: Organazation:
8iock Change identification Number:
Configuration Element:
cscCt Check box
csC Describe Others below
csy
Other
Software Languoge Percent of Total Code
)] %
2 %
k) %
System Lines of Code (SLOC)
Start Total SLOC
Answer for this
Block change only. New SLOC
Revised SLOC
Deleted SLOC
End Total SLOC
Total Manhours for this block chonge
Schedule
Start Date £nd Dote
Milestone Date

B.2

] Software Support Environment (descnbe below or attach description)

TOOLs:

DOCUMENTATION:

h) Team Experience (average in years) with:

The software

The documentation

The environment

The ianguage

B.3

b

Description of the software functions (describe below of attach description)

Description of changes (descrioe below of attach description)

Target Computer Description (describe below or attach description)

Available Memeory
(at start of change)

Available Throughput
(at start of change)

B.4

REVIC/COCOMO

SEER

- PRICE S/PRICE SM

Other

Check box

Estimation Process Description (describe below of attach description)

Othert Information/General Comments

B.5

Appendix C
Prototype Source Code

Ci1

Source Code for Prototype in Visual Basic Language.

Code for Global.bas

‘Enumerated Database type
Global Const UnknownDB = 0
Global Const BoehsDB = 1
Global Const SampledB = 2
Global Const ThesisbD8 = 3
Global Const CompThesisD8 = &

‘Set up Enumeraated Values for YData
'Only the thesis graph needs to use this
Global YPick As Integer

Global Const Executable_Time = 1
Global Const Time_Util = 2

Global Const Storage = 3

Global Const Mem Util = 4

Global Const Pi_Mult = 5

Global Const Analyst_Experience = 6
Global Const Lang_Experience = 7
Global Const Actual KDSI = 8

Global Const Equivalent _DSI = 9
Global Const Actual_Effort = 10

Global Const FileGraph = 0

'Global variables for Graph Axis Limits and Normalization Flag
‘Should only be used by forms involved with graphing

(1 couldm't figure another way to pass these parameters.)
Global YMax As Single

Global YMin As Single

Global XMax As Single

Global XMin As Single

Global NormState As Integer

Global Const Norm On = 1

Global Const Norm_Off = 0

'‘Provide Global Variable to hold current open database filename
‘and Handle. Permits different menu items to use same databsse.
Global DBFileSpec As String
Global DBFileName As String
Global DBHandle As Integer

Global more As Integer 'flag stating if more records exist
Global DBType As Integer 'Enumerated Database Type
Global ErrMsg As String ‘string for error mesaages

'‘Define Boehm's record structure from database
Type BoehmType

Num As Variant 'variant type permits testing of null values
Type As Variant
YEAR As Variant
LANGUAGE As Variant
RELY As Variant
DBSIZE As Variant
CPLX As Variant
EXTIME As Variant
STOR As vVariant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
MODP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As variant
MODE As Variant

TOTKDS! As Variant

C.2

ADJKDS] As Variant

NOMEFFORT As Variant

ESTEFFORT As Variant

ACTEFFORT As Variant
End Type
Globsl BoehmRec As BoehmType
Global BoehmHandle As Integer
Global Const BoehmRDS = “(PROJ_NUM(V) PROJ_TYPE(V) YEAR(V) LANGUAGE(V) RELY(V) DBSIZE(V) CPLX(V)
EXTIME(V) STOR(V) VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) MODP(V) TOOL(V) SCED(V)
RVOL(V) PI(V) MODE(V) TOTKDSI(V) ADJKDSI(V) NOMEFFORT(YV) ESTEFFORT(V) ACTEFFORT(V))*

‘Define Short version of Beohm's type for creating sample databases

Type SamplelType
Num As Variant ‘variant type permits testing of null values
Type As Variant
RELY As Variant
DBSIZE As Variant
2PLX As Variant
EXTIME As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
MODP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant
ACTKDS! As Variant
ACTEFFORT As Variant
End Type

Global SampleRec As SampleType

Global SampleHandle As Integer

Global Const SampleRDS = "(PRQJ_NUM(V) PROJ_TYPE(V) RELY(V) DBSIZE(V) CPLX(V) EXTIME(V) STOR(V)
VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) MODP(V} TOOL(V) SCED(V) RVOL({V) PI(V)
ACTKDSI(V) ACTEFFORT(V))®

'Define Thesis record Structure
Type ThesisType

BCNUM As Variant tvariant type permits testing of null values
CATEGORY As Variant
RELY As Variant
DBSIZE As Variant
CcPLX As Variant
TIMEUTIL As Variant
EXTIME As Variant
MEMUTIL As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
MODP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant

ENTROPY As Variant
ACTKDS! As Variant
ADDKDS! As Variant
MODKDS | As Variant
DELKDS! As Variant

EDSI As Variant
ACTEFFORT As Variant
End Type

Global ThesisRec As ThesisType
Global ThesisHandle As Integer

C3

Global Const ThesisRDS z “(BCNUM(V) CATEGORY(V) RELY(V) DBSIZE(V) CPLX(V) TIMEUTIL(V) EXTIME(V)
MEMUTIL(V) STOR(V) VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) MODP(V) TOOL(V) SCED(V)
RVOL(V) PI(V) ENTROPY(V) ACTKDSI(V) ADDKDSI(V) MOOKDSI(V) DELKOSI(V) EDSI(V) ACTEFFORT(V))*

'‘Define BadThesis record Structure
Type OldThesisType

BCNUM As Variant ‘variant type permits testing of null values
CATEGORY As Variant
RELY As Variant
DBSIZE As Variant
CPLX As Variant
TIMEUTIL As Variant
EXTIME As Variant
MEMUTIL As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
MODP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant
ENTROPY As Variant
ACTKDS! As Variant
ADOKDS! As Variant
MODKDS | As Variant
DELKDS! As Variant
ESDI As Variant
ACTEFFORT As Variant
End Type

Global OldThesisRec As OldThesisType

Global OldThesisHandle As Integer

Globat Const OldThesisRDS = "(BCNUM(V) CATEGORY(V) RELY(V) DBSIZE(V) CPLX(V) TIMEUTIL(V) EXTIME(V)
MEMUTIL(V) STOR(V) VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) MODP(V) TOOL(V) SCED(V)
RVOL(V) PI(V) ENTROPY(V) ACTKDSI(V) ADDKDSI(V) MODKDSI(V) DELKDSI(V) ESDI(V) ACTEFFORT(V)}"

Visual Basic global constant file. This file can be loaded
into a code module.

Some constants are commented out because they have
duplicates (e.g., NONE appears several places).

1]
1]
L]
L]
L]
1
' 1f you are updating a Visual Basic 1.0 program to run in
' Visual Basic 2.0, you should replace your global constants
' with the constants in this file. Note that True and False
' are now built into Visual Basic so are no longer defined in
' this file.

L

1

' General

' Clipboard formats

Global Const CF_LINK = &HBFOO
Global Const CF_TEXT = 1
Global Const CF_BITMAP = 2
Global Const CF_METAFILE = 3
Global Const CF_DIB = 8
Global Const CF_PALETTE = 9

' DragOver

Global Sonst ENTER = 0
Global Const LEAVE = 1
Global Const OVER = 2

' Drag (controls)
Global Const CANCEL = 0
Global Const BEGIN_DRAG

"
-

C4

Global Const END_DRAG = 2

' Show parameters
Global Const MODAL = 1
Global Const MODELESS = 0

' Arrange Method
' for MD! Forms
Global Const CASCADE = 0
Global Const TILE_HORIZONTAL
Global Const TILE_VERTICAL
Global Const ARRANGE_ICONS

wNn

t20rder Method
Global Const BRINGTQFRONT = @
Global Const SENDTOBACK = 1

! Key Codes
Global Const KEY_LBUTTON = &H1
Global Const KEY_RBUTTON = &H2

Global Const KEY_CANCEL = &H3
Global Const KEY_MBUTTON = &H4 ' NOT contiguous with L & RBUTTON
Global Const KEY_BACK = &H8
Global Const KEY_TAB = &H9
Global Const KEY_CLEAR = &HC
Global Const KEY_RETURN = &HD
Global Const KEY_SHIFT = &H10
Global Const KEY_CONTROL = &H11
Global Const KEY_MENU = &H12
Global Const KEY_PAUSE = &H13
Global Const XEY_CAPITAL = &H14
Global Const KEY_ESCAPE = 2H18
Global Const KEY_SPACE = &H20
Global Const KEY_PRIOR = &H21
Global Const KEY_NEXT = &H22
Global Const KEY_END = &H23
Global Const KEY_HOME = &H24
Global Const KEY_LEFT = &H25
Global Const KEY_UP = &H26
Globul Const KEY_RIGHT = &H27
Global Const KEY_DOWN = &H28
Global Const KEY_SELECT = &H29
Global Const KEY_PRINT = &H2A
Global Const KEY_EXECUTE = &H28
Global Const KEY_SNAPSHOT = &H2C
Global Const KEY_INSERT = &H2D
Global Const KEY_DELETE = &H2E
Global Const KEY_HELP = ZH2F

* KEY_A thru KEY_Z are the same as their ASCII equivalents: 'A' thru '2'
* KEY_O thru KEY_9 are the same as their ASCII equivalents: '0' thru '9'

Global Const KEY_NUMPADO = &H60
Glcbal Const KEY_NUMPAD1 = &H61
Global Const KEY_NUMPADZ2 = &H62
Global Const KEY_NUMPAD3 = &H63
Global Const KEY_NUMPAD4 = &H64
Globat Const KEY_NUMPADS = &H65
Global Const KEY_NUMPADG = &H66
Global Const KEY_NUMPAD7 = &H67
Global Const KEY_NUMPADS = &8H68 .
Global Const KEY_NUMPAD? = ZH69

Global Const KEY _MULTIPLY = &H6A
Global Const KEY_ADD = &H&B
Global Const KEY_SEPARATOR = &H6C
Global Const KEY SUBTRACT = &H&D
Global Const KEY DECIMAL = &H6E
Global Const KEY DIVIDE = &H6F
Global Const KEY_F1 = &H70
Global Const KEY_F2 = &HT71
Global Const KEY_F3 = &H72
Globat Const KEY_F4 = &H73
Global Const KEY_F5 = &H74
Global Const KEY_F& = &H75

UL T J N Ay
noanu

C.5

Global Const KEY_F7 = 8H76
Global Const KEY_F8 = &H77
Global Const KEY_F9 = &H78
Global Const KEY_F10 = EH79
Global Const KEY_F11 = ZH7A
Global Const KEY_F12 = &HTB
Global Const KEY_F13 = EH7C
Global Const KEY_F14 = &H7D
Global Const KEY_f15 = &H7E
Global Const KEY_F16 = &H7F

Global Const KEY_NUMLOCK = &H9G
' Variant VarType tags

Global Const V_EMPTY = 0
Global Const V_ ' NULL = 1
Global Const V INTEGER = 2
Global Const V_LONG = 3
Global Const V_SINGLE = 4
Global Const V_DOUBLE = 5
Global Const V_CURRENCY =
Global Const V_DATE = 7
Global Const V_STRING = 8

! Event Parameters

' ErrNum (LinkError)

Global Const WRONG_FORMAT = 1

Global Const DDE SOURCE _CLOSED = 6
Global Const Too MANY LlNKs =7
Global Const DATA TRANSFER FAILED = 8

' Querytnlioad

Global Const FORM_CONTROLMENU = 0
Global Const FORM_CODE = 1

Global Const APP_WINOOWS = 2
Global Const APP_TASKMANAGER = 3
Global Const FORM_MDIFORM = 4

' Properties

' Colors

Global Const BLACK = &HO&
Global Const RED = &HFF&
Global Const GREEN = &NFFQ0O0&
Global Const YELLOW = &HFFFF&
Global Const BLUE = &HFF0000
Global Const MAGENTA = &HFFOOFF
Global Const CYAN = &HFFFFOOQ
Global Const WHITE = &HFFFFFF

! System Colors

Global Const SCROLL_BARS = &H80000000
Global Const DESKTOP = &HB0C00001

Global Const ACTIVE_TITLE_BAR = &H80000002
Global Const INACTIVE_TITLE_BAR = &H80000003
Global Const MENU_BAR = &H80000004

Global Const WINDOW_BACKGROUND = &H8000000S
Global Const HINDOH_FRAME = &H80000006
Global Const MENU_TEXT = &H80000007

Global Const umoou TEXT = &H80000008
Global Const TITLE_BAR_TEXT = &H80000009
box. .

Scroll-bars gray area.

Desktop.

Active window caption.

Inactive window caption.

Menu background.

Window background.

Window frame.

Text in menus.

Text in windows.

Text in caption, size box, scroll-bar arrow

Global Const ACTIVE_BORDER = &H80000C0A Active window border.

Global Const INACTIVE_BORDER = &H80000008 Inactive window border.

Global Const APPLICATTON_WORKSPACE = &H8000000C * Background color of multiple document interface
(MD{) applications.

Global Const HIGHLIGHT = &H80000000
Global Const HIGHLIGHT_TEXT = &H8000000E
Global Const BUTTON_FACE = &HB80000OOF
Global Const BUTTON_SHADOW = &H80000010
Global Const GRAY_TEXT = &H80000011

Items selected item in a control.

Text of item selected in a control.

Face shading on command buttons.

Edge shading on command buttons.

Grayed (disabled) text. This color is set to 0

- - e .-

C.6

if the current display driver does not support a solid gray color.

Global Const BUTTON_TEXT = &H80000012

' Enumerated Types

' Align (picture box)

Global Const NONE = 0O

Global Const ALIGN_TOP = 1
Global Const ALIGN_BOTTOM = 2

' Aligrment
Global Const LEFT_JUSTIFY = 0
Global Const RIGHT_JUSTIFY = 1 ' 1 - Right Justify
Global Const CENTER = 2

' BorderStyle (form)
'Global Const NONE = 0

Global Const FIXED_SINGLE =

1

Global Const SIZABLE = 2
Global Const FIXED_DOUBLE = 3

' BorderStyle

'Global
'Global
'Globatl
'Global
'Global
'‘Global
'Global

Const
Const
Const
Const
Const
Const
Const

' MousePointer

(Shape and Line
TRANSPARENT = O
SOLID = 1
DASH = 2

oor =3
DASH_DOT = 4
DASH_DOT_DOT
INSIDE_SOLID

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

¢t DragMode

Global
Global

Const
Const

' DrawMode

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Globat
Global
Global
Global
Global

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

' DrawStyle

Global
Global
Global
Global
Global
Global

Const
Const
Const
Const
Const
Const

DEFAULT = 0
ARROM = 1
CROSSHAIR =
1BEAM = 3
1CON_POINTE
SI1ZE_POINTE
SIZE_NE_SW
SIZE_N_S
S12E_ nu K
SIZE_ W

uP_ ARR 0
HOURGLASS = 11
NO_DROP = 12

2

R =
R =
=6
7

8

wnmau

9
1

MANUAL = 0
AUTOMATIC =

BLACKNESS = 1
NOT_MERGE_PEN =
MASK_NOT PEN
NOT_COPY PEN
MASK, PEN NOT
INVERT =6
XOR_PEN = 7
NOT HASK PEN
HASK PEN =

NOT_ XOR PEN
NoP = 11
MERGE_NOT_PEN =
COPY_| PEN = 13
MERGE_PEN _NOT =
MERGE PEN 15
WHITENESS = 16

SOLID = 0
DASH = 1

oot = 2
DASH_DOT = 3
DASH_DOT_DOT
INVISIBLE = 5

)

' Text on push buttons.

t 0 - Left Justify

' 2 - Center

0
1
2
3

L R A)

VRNV UN=2O

None

Fixed Single

Sizable (Forms only)
Fixed Double (Forms only)

Transparent
Solid
Dash
Dot
Dash-Dot
Dash-Dot-Dot
Inside Solid

I T T S T N]

Default
Arrow
Cross
1-Beam
lcon

Size

Size NE SW
Size N §
Size NW SE
Size W E

10 - Up Arrow
11 - Hourglass
12 - No drop

' 0 - Manual

U!bu

8
10

=4

2

12
14

NMHUN=O

VR NOWNHWN -

1 ' 1 - Automatic

Blackness

Not Merge Pen
Mask Not Pen

Not Copy Pen

Mask Pen Not

Invert

Xor Pen

Not Mask Pen

Mask Pen

10 - Not Xor Pen

Nop

Merge Not Pen
Copy Pen
Merge Pen Not
Merge Pen
Whiteness

Solid

Dash

Dot
Dash-Dot
Dash-Dot-Dot
Invisible

C.7

Global Const INSIDE_SOLID = 6 ' 6 - Inside Solid

' FillStyle
' Global Const SOLID = O Solid
Global Const TRANSPARENT = 1 Transparent

Horizontal Line
Vertical Line
Upward Diagonal
Downsward Diagonal

Global Const HORIZONTAL_LINE =
Global Const VERTICAL_LTNE = 3
Global Const UPWARD_DTAGONAL =
Global Const DOWNWARD DIAGONAL

"nes N
~NOWVISWN=O

Global Const CROSS = § Cross

Global Const DIAGONAL_CROSS = 7 Diagonal Cross
' LinkMode (forms and controls)

' Global Const NONE = 0 None

Global Const LINK_SOURCE = 1

]

' Source (forms only)
Global Const LINK_AUTOMATIC = 10

[}

L]

Automatic (controis only)
Manual (controls only)
Notify (controls only)

Global Const LINK_MANUAL = 2
Global Const LINK_NOTIFY = 3

W = -0

' LinkMode (kept for VB1.0 compatibility, use new constants instead)
Global Const HOT = 1 ' 1 - Hot (controls only)
Global Const SERVER = 1 ' 1 - Server (forms only)
Global Const COLD =2 ' 2 - Cold (controls only)

! ScaleMode

Global Const USER = 0 ' 0 - User
Global Const TWIPS = 1 ' 1 - Twip
Global Const POINTS = 2 ' 2 - Point
Global Const PIXELS = 3 ' 3 - Pixel
Global Const CHARACTERS = 4 ' 4 - Character
Global Const INCHES = 5 'S5 - Inch
Global Const MILLIMETERS = 6 ' 6 - Millimeter
Global Const CENTIMETERS = 7 ' 7 - Centimeter
¢+ ScrollBar

' Global Const NONE =01' 0 - None
Global Const HORIZONTAL = 1 ' 1 - Horizontal
Global Const VERTICAL =2 ' 2 - Vertical
Global Const BOTH = 3 ' 3 - Both

! Shape

Global Const SHAPE_RECTANGLE = 0

Global Const SHAPE_SQUARE = 1

Global Const SHAPE_OVAL = 2

Global Const SHAPE_CIRCLE = 3

Global Const SHAPE_ROUNDED_RECTANGLE = 4
Global Const SHAPE_ROUNDED_SQUARE = S

' WindowState

Globat Const NORMAL = 0 ' 0 - Normal
Global Const MINIMiZED = 1 ' 1 - Minimized
Global Const MAXIMIZED = 2 ' 2 - Maximized
' Check value

Global Const UNCHECKED = 0 ' 0 - Unchecked
Global Const CHECKED = 1 ' 1 - Checked
Global Const GRAYED = 2 ' 2 - Grayed

' Shift parameter masks
Global Const SHIFT_MASK = 1
Global Const CTRL_MASK = 2
Global Const ALT_MASK = 4

! Button parameter masks

Global Const LEFT_BUTTON = 1
Global Const RIGHT_BUTTON = 2
Global Const MIDDLE_BUTTON = 4 *

' Function Parameters

* MsgBox parameters

Global Const MB_OK = 0 ' 0K button only

Global Const MB_OKCANCEL = 1 ' 0K and Cancel buttons

Global Const MB_ABORTRETRYIGNORE = 2 ' Abort, Retry, and Ignore buttons

C38

.

Global
Global
Global

Global
Global
Global
Global

Global
Global
Global
Global
Global

Const MB_YESNOCANCEL = 3
Const MB_YESNO = &
Const MB_RETRYCANCEL = 5

Const M8_ICONSTOP = 16

Const MB_ICONQUESTION = 32
Const MB_ICONEXCLAMATION = 48
Const MB_ICONINFORMATION = 64

Const MB_APPLMODAL = 0
Const MB_DEFBUTTON1 = 0
Const MB_DEFBUTTON2 = 256
Const MB_DEFBUTTON3 = 512
Const MB_SYSTEMMODAL = 4096

! MsgBox return values

Global
Global
Global
Global
Global
Global
Global

Const 1DOK = 1
Const IDCANCEL = 2
Const IDABORT = 3
Const IDRETRY = &4
Const IDIGNORE = S
Const IDYES = 6
Const IDNO = 7

' SetAttr, Dir, GetAttr functions

Global
Global
Global
Global
Global
Global
Global

'Grid

'ColAlignment, FixedAlignment Properties

Global
Global
Global

Const ATTR_NORMAL = 0

Const ATTR_READONLY = 1
Const ATTR_HIDDEN =
Const ATTR_SYSTEM =
Const ATTR_VOLUME =
Const ATTR_DIRECTORY = 16

Const ATTR_ARCHIVE = 32

2
4
8

Const GRID_ALIGNLEFT = 0
Const GRID_ALIGNRIGHT = 1
Const GRID_ALIGNCENTER = 2

'Fillstyle Property

Global
Global

Const GRID_SINL *.
Const GRID_REPEAT

'OLE Client Control
'Action

Globat
Global
Global
Global
Global
Global
Global
Globat
Global
Global
Global
Global

Const OLE_CREATE_NEW = 0
Const OLE_CREATE_FROM_FILE = 1
Const OLE_COPY = 4
Const OLE_PASTE = 5
Const OLE_UPDATE =
Const OLE_ACTIVATE
Const OLE_EXECUTE = 8
Const OLE_CLOSE = 9
Const OLE_DELETE = 10
Const OLE_SAVE_TO_FILE =
Const OLE_READ_FROM_FILE
Const OLE_CONVERT_TO_TYPE =

-]
=7

1
=12
13

IServerType

Global
Global
Global

Const OLE_LINKED = O
Const OLE_EMBEDDED = 1
Const OLE_STATIC = 2

'UpdateOptions

Globat

Const OLE_AUTOMATIC = €

Global Const OLE_FROZEN = 1
Global Const OLE_MANUAL = 2

‘Update Event Constants
Global Const OLE_CHANGED =
Global Const OLE_SAVED = 1
Global Const OLE_CLOSED = 2
Global Const OLE_RELEASE = 3

0

- - am - -

Yes, No, and Cancel buttons
Yes and No buttons
Retry and Cancel buttons

Critical message
Warning query
Warning message
Information message

Application Modal Message Box
First button is defautt
Second button is default
Third button is default
1System Modal

OK button pressed
Cancel button pressed
Abort button pressed
Retry button pressed
Ignore button pressed
Yes button pressed
No button pressed

C.9

Table of Contents for Visual Basic Professional

1. 3-D Controls
(Frame/Panel /Option/Check/Command/Group Push)
2. Animated Button

3. Common Dialog Section
Gauge Control

S. Graph Control Section
6. Key Status Control

7. Spin Button

8. MCl Control (Multimedia)
9. Masked Edit Control

10. Comm Control

11. ODBC Constants

.

tAction Property

Global Const DLG_FILE_OPEN = 1
Global Const DLG_FILE_SAVE = 2
Global Const DLG_COLOR = 3
Global Const DLG_FONT = 4
Global Const DLG_PRINT =5
Global Const DLG_HELP = 6

'file Open/Save Dialog Flags

Global Const OFN_READONLY = &H1&

Global Const OFN_OVERWRITEPROMPT = &H2&
Global Const OFN_HIDEREADONLY = &H4d
Global Const OFN_NOCHANGEDIR = &HB8&

Global Const OFN_SHOWHELP = &H10&

Global Const OFN_NOVALIDATE = &H100&
Global Const OFN_ALLOWMULTISELECY = &H200&
Global Const OFN_EXTENSIONDIFFERENT = &H400&
Global Const OFN_PATHMUSTEXIST = &H800&
Global Const OFN_FILEMUSTEXIST = &N1000%
Global Const OFN_CREATEPROMPT = &H2000%
Global Const OFN_SHAREAWARE = &H40002
Global Const OFN_NOREADONLYRETURN = &H8000&

'Color Dialog Flags

Global Const CC_RGBINIT = &H1&

Global Const CC_FULLOPEN = &H2&
Global Const CC_PREVENTFULLOPEN = &H4&
Global Const CC_SHOWHELP = &HB&

'Fonts Dialog Flags

Global Const CF_SCREENFONTS = &H1&
Global Const CF PRINTERFONTS = &H2&
Global Const CF_BOTH = &N3&

Global Const CF_SHOMHELP = &H4&

Global Const CF_INITTOLOGFONTSTRUCT = &H40&
Global Const CF_USESTYLE = &HB0Z

Global Const CF_EFFECTS = &H100&

Global Const CF_APPLY = &H200%

Global Const CF_ANSIONLY = &H400&
Global Const CF_NOVECTORFONTS = &HB800&
Global Const CF_NOSIMULATIONS = &H1000&
Global Const CF_LIMITSIZE = £H2000&
Global Const CF_FIXEDPITCHONLY = &H4000&
Global Const CF_WYSIWYG = &HB000&
CF_PRINTERFONTS

Global Const CF_FORCEFONTEXIST = 2H10000
Global Const CF_SCALABLEONLY = &£H20000
Global Const CF_TTONLY = &H40000

Global Const CF_NOFACESEL = 2H80000
Global Const CF_NOSTYLESEL = ZH100000
Globat Const CF_NOSIZESEL = &H200000

'must also have CF_SCREENFONTS &

'‘Printer Dialog Flags
Global Const PD_ALLPAGES = &HO&

C.10

Global
Global
Global
Globat
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

PO_SELECTION = &H1Z
PD_PAGENUNS = &H2L
PO_NOSELECTION = LH4d
PO_NOPAGENUMS = LH8E
PO_COLLATE = &N10&
PO_PRINTTOFILE = &H20%
PO_PRINTSETUP = &H4O0&
PO_NOWARNING = LHBOL
PO_RETURNDC = &H100&
PO_RETURNIC = &H200&
PO_RETURNDEFAULT = &H40OR
PD_SHOWHELP = LHB0OL
PO_USEDEVMODECOPIES = &H40000
PO_DISABLEPRINTTOFILE = &NS8000O
PO_HIDEPRINTTOFILE = &H100000

‘Help Constants

Global
Global
Global
Global
Globat
Globa!
Global
Global
Global
Global
Global
Global

‘Error
Global

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

'Added
Global
Global
Global
Global
Global

Global
Global
Global
Global
Global
Global
Global
Global
Global
Globat
Global
Global

Global
Global

Global
Global
Global
Global

Const HELP_CONTEXT = &H1 ‘Display topic in ulTopic
Const HELP_QUIT = 2H2 ‘Terminate help

Const HELP_INDEX = &H3 'Display index

Const HELP_CONTENTS = &H3

Const HELP_HELPONHELP = &H4 ‘Display help on using help
Const HELP_SETINDEX = &HS5 ‘Set the current Index for multi index help
Const HELP_SETCONTENTS = &H5

Const HELP_CONTEXTPOPUP = &H8

Const HELP_FORCEFILE = &9

Const NELP_KEY = &H101 '‘Display topic for keyword in offabData
Const HELP_COMMAND = &H102

Const HELP_PARTIALKEY = &K105 ‘call the search engine in winhelp
Constants

Const CODERR_DIALOGFAILURE = &HFFFF

Const COERR_GENERALCODES = &HO

Const CDERR_STRUCTSIZE = &H1

Const CDERR_INITIALIZATION = &H2

Const CDERR_NOTEMPLATE = &H3

Const CDERR_NOHINSTANCE = &H4

Const COERR_LOADSTRFAILURE = &HS

Const COERR_FINDRESFAILURE = &H6

Const CDERR_LOADRESFAILURE = &H7

Const CODERR_LOCKRESFAILURE = &H8

Const CDERR_MEMALLOCFAILURE = &H9

Const COERR_MEMLOCKFAILURE = &HA

Const CDERR_NOHOOK = 2HB

for CMDLG.VBX

Const CDERR_CANCEL = &HC

Const CDERR_NODLL = &HD

Const CDERR_ERRPROC = &HE

Const CDERR_ALLOC = &HF

Const CDERR_HELP = &H10

Const PDERR_PRINTERCODES = ZH1000

Const PDERR_SETUPFAILURE = &H1001

Const PDERR_PARSEFAILURE = &H1002

Const PDERR_RETDEFFAILURE = &H1003

Const PDERR_LOADDRVFAILURE = &H1004

Const PDERR_GETDEVMODEFAIL = &H1005

Const PDERR_HNITFAILURE = &H1006

Const PDERR_NODEVICES = &H1007

Const PDERR_NODEFAULTPRN = &H1008

Const PDERR_DNDMMISMATCH = &H1009

Const PDERR_CREATEICFAILURE = &H100A

Const PDERR_PRINTERNOTFOUND = &H1008

Const CFERR_CHOOSEFONTCODES = &H2000

Const CFERR_NOFONTS = &H2001 .
Const FNERR_FILENAMECODES = &H3000

Const FNERR_SUBCLASSFAILURE = &H3001

Const FNERR_INVALIDFILENAME = &H3002

Const FNERR_BUFFERTOOSMALL = &H3003

C.11

Global Const FRERR_FINDREPLACECODES = LH4000
Global Const CCERR_CHOOSECOLORCODES = &H5000

..

Globsl Const G_NONE = 0
Global Const G_DEFAULT = 0

Global Const G_OFF = 0
Global Const G_ON = 1

Global Const G_MONO = O
Globsl Const G_COLOR = 1

Global Const G PIE2D = 1
Global Const G_PIE3D = 2
Global Const G BAR2D = 3
Global Const G_BAR3D = 4
Global Const G_GANTT = 5
Global Const G_LINE = 6
Global Const G_LOGLIN = 7
Global Const G_AREA = 8
Global Const G_SCATTER = 9
Global Const G_POLAR = 10
Global Const G _HLC = 11

Global Const G BLACK = 0

Global Const G_BLUE = 1

Global Const G_GREEN = 2

Global Const G_CYAN = 3

Global Const G_RED = &

Global Const G_MAGENTA = S
Global Const G_BROWN = 6

Global Const G_LIGHT_GRAY = 7
Globat Const G_DARK _GRAY = 8
Global Const G_LIGHT BLUE = 9
Global Const G_LIGHT _GREEN = 10
Global Const G_LIGHT_CYAN = 11
Global Const G_LIGHT_RED = 12
Global Const G_LIGHT_MAGENTA = 13
Global Const G_YELLOW = 14
Global Const G_WHITE = 15
Global Const G_AUTOBW = 16

‘Patterns

Global Const G_SOLID = 0
Global Const G_HOLLOW = 1
Global Const G_HATCH1 = 2
Global Const G_HATCH2 = 3
Global Const G_HATCH3 = 4
Global Const G_HATCH4 = S5
Global Const G_HATCHS = 6
Global Const G_MATCH6 = 7
Global Const G_BITMAPT = 16
Global Const G_BITMAPZ = 17
- Global Const G_BITMAPI = 18
Global Const G _BITMAPS = 19
Global Const G _BITMAPS = 20
Global Const G_BITMAPS = 21
Global Const G_BITMAP7 = 22
Global Const G_BITMAPS = 23
Global Const G_BITMAPY = 24
Global Const G_BITMAPIO = 25
Global Const G_BITMAP11 = 26
Global Const G_BITMAP12 = 27
Global Const G_BITMAP13 = 28
Global Const G_BITMAP14 = 29
Global Const G_BITMAP1S = 30
Global Const G_BITMAP16 = 31

)

C.12

P

‘Symbols

Global Const G_CROSS _PLUS = 0
Global Const G_CROSS_TIMES = 1
Global Const G_ TRIANGLE _up = 2
Global Const G_SOLID_TRTANGLE_UP = 3
Global Const G_TRIANGLE_DOWN = &
Global Const G_SOLID_TRTANGLE_DOWN = 5
Global Const G_SQUARE = 6

Global Const G_SOLID_SQUARE = 7
Global Const G_| "DIAMOND = 8

Global Const G_SOLID_DIAMOND = 9

Line Styles

'Globsl Const G_SOLID = 0
Global Const G_DASH = 1
Global Const G_DOT = 2

Global Const G_DASHDOT = 3
Global Const G_DASHOOTDOT = &

'Grids
Global Const G_HORIZONTAL = 1
Global Const G_VERTICAL = 2

‘Statistics
Global Const G_MEAN
Global Const G_MIN
Global Const
Global Const

'‘Data Arrays

Global Const G_GRAPH DATA = 1
Global Const G COLOR DATA =2
Global Const G_| EXI’RA “DATA = 3
Global Const G LABEL _ “TEXT = 4
Global Const G LEGEND TEXT = 5
Global Const G_| “PATTERN _DATA = 6
Global Const G_| SYHBOL DATA = 7
Global Const G XPOS DATA =8
Global Const G_i “ALL DATA =9

‘Draw Mode
Global Const G_NO_ACTION = 0
Global Const G_CLEAR = 1
Global Const G DRAW = 2
Global Const G BLIT =3
Global Const G_COPY = 4
Global Const G_PRINT
Global Const G_WRITE

S
6

'Print Options
Global Const G_BORDER = 2

‘Pie Chart Options '
Global Const G_NO_LINES = 1
Global Const G_| _COLORED = 2
Global Const G_PERCENTS = 4

'8ar Chart Options ¢
'Globat Const G_HORIZONTAL = 1
Global Const G_| STACKED = 2
Global Const G PERCENTAGE =z 4
Global Const G_ Z CLUSTERED = 6

'Gantt Chart Options '
Global Const G_SPACED_BARS = 1

‘Line/Polar Chart Options '
Global Const G_SYMBOLS = 1
Global Const G_STICKS = 2
Global Const G_LINES = 4

'Area Chart Options '
Global Const G_ABSOLUTE = 1
Global Const G_PERCENT = 2

C.13

'HLC Chart Options '
Global Const G_NO_CLOSE = 1
Global Const G_NO_WIGH_LOW = 2

t Agility/ve trappasble error codes
' Updated: 07-Sep-92

Global Const AGIE_DBOPEN = 4100
Global Const AGIE_DBNOTOPEN = 4101
Global Const AGIE_NOTEXIST = 4102
Global Const AGIE_NOUPDATE = 4103
Global Const AGIE_NODELETE = 4104
Global Const AGIE_NOADD = 4105
Global Const AGIE_BADFILE = 4106
Global Const AGIE_NOCURPOS = 4107
Global Const AGIE_BOUNDS = 4108
Global Const AGIE_ROWNUM = 4109
Global Const AGIE_BADSORT = 4110
Global Const AGIE_BADQUERY = 4111
Global Const AGIE_BADPARAM = 4112
Global Const AGIE_NOPERMIT = 4113
Global Const AGIE_MARKERR = 4114
Global Const AGIE_SETERR = 4115
Global Const AGIE_RECACCESS = 4116
Global Const AGIE_FLDACCESS = 4117
Global Const AGIE_INDEXERR = 4118

Function NDEV (Mean, SD) As Single

Const Pi = 3.1415926536

NOEV = Sqr¢(2 * Log(1 / Rnd)) * Cos(2 * Pi * Rnd) * SD + Mean
End Function

Function NL () As String

NL = Chr$¢10) + Chr$(13)
End Function

C.14

‘e

Code for Agi.bas - database

Agility/VB Release 001 (0.243) Definitions
Copyright (C) Apex Software Corporation, 1992. All rights reserved.

** REQUIRES VISUAL BASIC 2.0 ***

' File Maintenance

Declare Sub AgiViewOpen Lib "agivb001.dlL" (ByVal handX, Byval viewname$, ByVal mode$)
Declare Sub AgiSchemaOpen Lib “agivb001.dl1* (ByVal handX, Byval dbhandX)

Declare Function AgiFreefile Lib “agivb001.dli* () As Integer

Declare Sub AgiViewClose Lib “agivb001.dll¥ (Byval handX)

Declare Sub AgiViewCloseAll Lib “agivb001.dll"™ ()

Declare Function AgiError Lib “agivb001.dlLL" () As Integer

Declare Function AgiErrorText Lib “agivb001.dlLi" () As String

Declare Function AgiinternalError Lib “agivb001.dl(® () As Integer

Declare Function AgivVersion Lib »agivb001.dil" () As String

' Record maintenance
Declare Sub AgiViewDelete Lib "agivb001.dll" (ByVal handX)
! Record data access and manipulation

Declare Sub AgiViewAdd Lib "agivb001.dl{% (Byval handX, Byval defs$, (pRec As Any)
Declare Sub AgiViewGet Lib "agivb001.dl(" (ByVal handX, ByVal defs$, LpRec As Any)
Declare Sub AgiViewUpdate Lib "agivb001.dl(* (ByVal handX, Byval defs$, (pRec As Any)
Declare Function AgiViewCount Lib "agivb001.dll" (Byval handX) As Long

' Ordering

Declare Sub AgiViewSort Lib “agivb001.dll* (Byval handX, Byval sorts$)
Declare Sub AgiViewUnsort Lib »agivb001.dl{" (Byval handX)
Declare Function AgiViewSortedOn Lib "agivb001.dlL" (ByVal handX) As String

' Positioning

Declare Function AgiViewFirst Lib "agivb001.dlLl" (Byval handX) As Integer
Declare Function AgiViewNext Lib "agivb001.dtl" (Byval handX) As Integer
Declare Function AgiViewLast Lib "agivb001.dtl" (Byval handX) As Integer
Declare Function AgiViewPrevious Lib "agivb001i.dli* (Byval handX) As Integer
Declare Function AgiViewGetRow Lib “agivb001.dl!" (Byval handX) As Long
Declare Sub AgiViewSetRow Lib "agivb001.dl1" (ByVal handX, Byval rownumid)

¢ Set Selection

Declare Sub AgiViewFind Lib "agivb001.dll" (Byval handX, Byval defs$, (pRec As Any)
Declare Sub AgiViewFindAlso Lib “agivb001.dtl" (Byval handX, Byval defs$, {pRec As Any)
Declare Sub AgiViewFindAll Lib “agivb001.dlL" (Byval handX)

Declare Sub AgiViewRefind Lib "agivb001.dlLL" (ByVal handX)

Declare Sub AgiViewEmptySet Lib "agivb001.dll" (Byval handX)

' Set save, restore, copy and deletion

Declare Sub AgiViewMemorizeSet Lib "agivb001.dl(" (Byval hand%, ByVal setname$)
Declare Sub AgiViewRecaliSet Lib *agivb001.dll" (Byval hand%, ByVal setname$)
Declare Sub AgiViewForgetSet Lib "“agivb001.dlL" (Byval hand%, ByVal setname$)
Declare Sub AgiViewCopySet Lib "agivb001.dl{" (Byval srch%, Byval desthX)
Declare Sub AgiViewDeleteSet Lib “agivb001.dll" (Byval handX)

Declare Sub AgiViewCopyRecord Lib "agivb001.dlLl* (Byval srchX, ByVal desth¥X)

' Mark manipulation

Declare Sub AgiViewMark Lib "agivb001.dlLL" (8yval handX, ByvVal markname$)
Declare Sub AgiViewToMark Lib "agivb001.dl|" (Byval handX, Byval markname$)
Declare Sub AgiViewForgetMark Lib "agivb001.dlLl" (Byval hand%, ByVal markname$)
' Record accumulation

Declare Sub AgiViewBuildRecord Lib "agivb001.dlLl"* (Byval handX, ByVal defs$, LpRec As Any)
Declare Function AgiGatherData Lib "agivb001.dl{* (Byval handX, frm As Form) As Integer

C.15

Declare Function AgiGatherCtiData Lib “agivb001.dll* (Byval handX, ctl As Control) As Integer
' Special definitions to support array storage

Declare Sub AgiViewGetArray Lib ®agivb001.dll" Alias “AgiViewGet" (ByvVal handX, Byval defs$,

lpRec() As Any)
Declare Sub AgiViewlpdateArray Lib “agivb001.dll" Alias “AgiViewlpdate® (ByVal handX, 8yval defs$,

LpRec() As Any)
Declare Sub AgiViewAddArray Lib “agivb001.dil® Alias “AgiViewAdd* (ByVal handX, Byval defs$,

LpRec() As Any)
Declare Sub AgiviewBuildRecordArray Lib “agivb001.dll® Atias “AgiViewBuildRecord" (ByVal handX,

Byval defsS, LpRec() As Any)

C.16

Code for B8ehmStat Form
Option Explicit

Sub cmdCalc_Click ()
Dim Mode As String
Dim RecMode As String
Dim ModeCount As Integer
Dim RecCount As Integer

Dim PI As Double
Dim BaseCoefficient As Single
Dim BaseExponent As Single
Dim PredCoefficient As Single
Dim PredExponent As Single

Dim EstEffort As Double
Dim LogEstEffort As Double
Dim ACTEFFORT As Single
Dim LogActEffort As Double
Dim ActEffMean As Double

Dim LogActEffMean As Double
Dim 8oehmHandle As Single

Dim SumActEff As Double
Dim SumLogActEff As Double

Dim SSE As Double
Dim LogSSE As Double
Dim LogSSTO As Double
Dim SUMMRE As Double
Dim SumLogMRE As Double
Dim R2 As Single
Dim RRMS As Single
Dim MRE A8 Single
Dim LogMRE As Single

Dim MREMean As Single
Dim PredLevel As Single
Const MRELimit = .25

Dim Improvelevel As Single

If optOrganic.value = True Then
Mode = “ORG"

Elself optSemiD.value = True Then
Mode = “Spv

Elself optEmbedded.Value = True Then
Mode = “g"

Elself optAllData.Value = True Then
Mode = “ALL"

Else
Mode = "UNKY

End If

Mode = Trim(Mode)

BaseCoefficient = Val(txtBaseCoeff.Text)
BaseExponent = Val(txtBaseExp.Text)
PredCoefficient = Val(txtPredCoeff.Text)
PredExponent = Val(txtPredExp.Text)

BoehmHand'e = DBHandle

'AgiViewOpen BoehmHandle, "boehm's.dbf¥,6 wR®
'Debug.Priat AgiErrorText()

more = AgiViewFirst(BoehmHandle)

'Find Average of Actual Efforts in Real and Log domains
SUmMACtEff = O#

SumLogActEff = O#

ModeCount = 0

Do While more
AgiViewGet BoehmHandle, "MODE(S)", RecMode
1f Mode = Trim(RecMode) Or Mode = "ALL" Then
ModeCount = ModeCount + 1
'txtNumMode. Text = FormatS$(ModeCount, “###¥0%)
AgiViewGet BoehmHandle, YACTEFFORT(F)", ACTEFFORT

C.17

SumACtEff 3 SumACtEff + ACTEFFORT
Suml.ogActEff = SumLogActEff + Log(ACTEFFORT)
End 1f
more = AgiViewlext(Boehmiandle)

Loop

If ModeCount > 0 Then
ActEffMean = SumACtEff / ModeCount

. LogActEffMean = SumlogActEff / ModeCount

Else
MsgBox "No Records found with matching Mode.*
Exit Sub

End If

'Caluclate Statistics
SSE = O#

LOgSSE = O#

LogSSTO = O#

SUNMRE = O#
SURLOGMRE = O#
Predievel = Ot
ImprovelLevel = 0!
RecCount = 0
ModeCount = 0

more = AgiViewFirst(Boehmiandle)
txtNumMode.Text = Format$(ModeCount, “##¥0")
Do While more
RecCount = RecCount + 1
txtNumRec.Text = Format$S(RecCount, “"###0")
AgiViewGet Boehmiandle, BoehmRDS, BoehmRec
1f Mode = Trim(BoehmRec.Mode) Or Mode = "ALL" Then
ModeCount = ModeCount + 1
txtNumMode.Text = Format$(ModeCount, "###0")
Pl = BoehmRec.RELY * BoehmRec.DBSIZE * BoehmRec.CPLX * BoehmRec.EXTIME
Pl = P1 * BoehmRec.STOR * BoehmRec.VIRT * BoehmRec.TURN * BoehmRec.ACAP
Pl = Pl * BoehmRec.AEXP * BoehmRec.PCAP * BoehmRec.VEXF “ BoehmRec.LEXP
Pl = PI1 * BoehmRec.MODP * BoehmRec.TOOL * BoehmRec.SCEDL * BoehmRec.RVOL
EstEffort = Pl * PredCoefficient * (BoehmRec.ADJKDS! ~ PredExponent)
LogEstEffort = Log(EstEffort)
MRE = Abs(BoehmRec.ACTEFFORT - EstEffort)
LogMRE = Abs(Log(BoehmRec.ACTEFFORT) - LogEstEffort)

‘Calculate sums BoehmRec.STOR
SSE = SSE + MRE ~ 2
LOgSSE = LogSSE + LogMRE ~ 2
LogSSTO = LogSSTO + (Log(BoehmRec.ACTEFFORT) - LogActEffMean) ~ 2
SUMMRE = SUMMRE + MRE
1f MRE / BoehmRec .ACTEFFORT <= MRELimit Then
PredLevel = PredlLevel + 1#
End 1f

[f MRE < Abs(BoehmRec.ACTEFFORT - (Pl * BaseCoefficient * (BoehmRec.ADJKDSI ~

BaseExponent))) Then
Improvelevel = Improvetevel + 1#
End If
End 1f
more = AgiViewNext(BoehmHandle)
Loop
'AgiViewClose BoehmHandle

If ModeCount > 0 Then
R2 = 1 - (LogSSE * (ModeCount - 1)) / (LogSSTO * (ModeCount - 2))
RRMS = (Sqr(SSE / ModeCount)) / ActEffMean
MREMean = SumMRE / ModeCount
PredLevel = (PredlLevel / ModeCount) * 100
Improvetevel = (ImprovelLevel / ModeCount) * 100

End 1f

Text3.Text = Format$(R2, "0.0000%")

Text4d.Text = Format$(RRMS, "0.000")

Text5.Text = Format$(MREMean, "0.00")

Text6.Text = Format$(Predievel, "#0.0") + "Xu

Text9.Text = Format$(ImproveLevel, "#0.0") + wxv
End Sub

C.18

Sub
End
Sub

End
Sub

End
Sub

End

cmdCancel _Click ()
Unload frmStatBoehm
Sub

optEmbedded_Click ()
txtBaseCoeff.Text = #2_8¢
txtBaseExp.Text = *1,20"
sub

optOrganic_Click ()
txtBaseCoeff.Text = "3 2v
txtBaseExp = "1.05%

Sub

optSemid_Click ()
txtBaseCoeff.Text = “3,0"
txtBaseExp.Text = "1,12%
Sub

C.19

Code for BhmGraph Form

Option Explicit
Option Base 1

Sub

End
Sub

End
Sub

caxdCancel _Click ()
Graph1.DstaReset = G_All_Data
Untoad frmBoehmGraph

Sub

cmdNorm_Click ()

If NormState = Norm_Off Then
cmclNorm.Caption = “Normalize Off"
NormState = Norm_On

Else
cmdNorm,Caption = "Normalize On*
NormState = Norm_Off

End If

Select Case DBType
Case BoehmD8

LoadBoehmData XMin, XMax, NormState

Case SampleDB

LoadSampleData XMin, XMax, NormState

Case ThesisDB, CompThesisDB
Case UnknownDB
End Select

Graph1.DrawMode = G_Draw

1f FileGraph = 1 Then
Graph1.DrawMode = G_Write

End [f

Sub

cmdZoom_Click ()

Dim TempYMax As Single
Dim TempYMin As Single
Dim TempXMax As Single
Dim TempXMin As Single
Dim Redraw As Integer

Redraw = False

TempYMax = YMax
TempYMin = YMin
TempXMax = XMax
TempXMin = XMin

frmZoomData.Show Modal

If XMax <> TempXMax Or XMin <> TempXMin Then

Redraw = True
Graphl.DataReset = G_All_Data
Select Case DBType

Case BoehmDB

LoadBoehmData XMin, XMax, NormState

Case SampleDB8

LoadSampleData XMin, XMax, NormState

Case ThesisDB, CompThesisDB
Case UnknownD8
End Select
End If

If YMax <> TempYMax Then
Redraw = True
Graph1.YAxisMax = YMax

End If

If YMin <> TempYMin Then
Redraw = True
Graph1.YAxisMin = YMin

End If

1f Redraw Then

C.20

Graph1.DrawMode = G_Draw
End If
If FileGraph = 1 Then
Graph1.DrawMode = G_Write
End If
End Sub

Sub Form_Load ()
txtOBName.Text = DBFileSpec
Screen.MousePointer = HourGlass

‘set filename for saving graph

Graph1.Imagefile = “behmgrph

Graph!.NumwPoints = 100

Graphl.IndexStyle = 1 'Enhanced index style permits access to
‘graph 2-D arrays for scatter data.

Graphl.YAxisStyle = 2 'Permits user defined Y-origin through YAxisMin,
Graph1.YAxisTicks = 8

‘Set default Axis limits for graph

YMax = 1# 'Will increase upon reading database

YMin = 0#

XMax = 3000# ‘May decrease to fit x range of data

XMin = 0#

WindowState = Maximized

NormState = Norm_Off
Graphl.LeftTitle = tMyw
Graph1.BottomTitle = "Size in KDSIM
Graph1.DrawMode = G_Draw

Select Case DBType
Case BoehmDB
LoadBoehmData XMin, XMax, NormState
Case SampleDB
LoadSampleData XMin, XMax, NormState
Case ThesisDB, CompThesisDB

Case UnknownD8
End Select
Screen.MousePointer = HourGlass
'Set Y-axis scale
Graph1.YAxisMax = YMax
Graph1.YAxisMin = YMin
Graph1.DrawMode = G_Dram

If FileGraph = 1 Then
Graph1.DrawMode = G_Write

End 1f

1f FileGraph = 1 Then
Graph1.0rawMode = G_Write

End If

Screen.MousePointer = Default

End Sub

Sub LoadBoehmData (XLower As Single, XUpper As Single, Normalize As Integer)
Dim Mode As Integer
Const NumModes = 3
Graph1.NumSets = NumModes
Dim I As Integer

'Array subscripting
' 1

= Organic Mode
' 2 = Semidetached Mode
! 3 = Embedded Mode

ReDim ModeCount(NumModes) As Integer

Dim Pl As Double
ReDim Coefficient(NumModes) As Single
ReDim Exponent(NumModes) As Single
ReDim CoeffOnly(NumModes) As Single
ReDim ExpOnly(NumModes) As Single
Exponly(1) = 1.05

ExpOnly(2) = 1.12
Exponly(3) = 1.2

Dim Boehmilandle As Integer
Dim RecCount As Integer
ReDim TempQ(NumModes) As Double
ReDim SumMMQ(NumModes) As Double
ReDim SumQ2(NumModes) As Double

ReDim Templog(NumModes) As Double
ReDim TempDiv(NumModes) As Double

ReDim a0(NumModes) As Integer
ReDim al(NumModes) As Double
ReDim a2(NumModes) As Double
ReDim dO(NumModes) As Double
ReDim d1(NumModes) As Double

‘Intialize all mode arrays to zero
For 1 = 1 To NumModes

SunMMQ(l) = O#

SumQ2(1) = O#

ModeCount(1) = 0

al(l) = O#

a2(1) = O#

d0(1) = O#

di(1) = o#
Next |
RecCount = 0

Boehmitandle = DBHandle
more = AgiViewFirst(BoehmHandle)
Screen.MousePointer = HourGlass
Do While more
AgiViewGet Boehmiandle, BoehmRDS, BoehmRec

RecCount =z RecCount + 1

‘Set appropriate Mode and update correct ModeCount
Select Case Trim(BoehmRec.Made)

Case "“ORG"

. Mode = 1

Case "sD"
Mode = 2

Case “g"
Mode = 3

Case Else
MsgBox "Unrecognized Mode at record " + Str(RecCount) + "
Mode = 1

End Select

ModeCount(Mode) = ModeCount(Mode) + 1

'Calculate the Mutiplier, PI

P! = BoehmRec.RELY * BoehmRec.DBSIZE * BoehmRec.CPLX * BoehmRec.EXTIME
Pl = P1 * BoehmRec.STOR * BoehmRec.VIRT * BoehmRec.TURN * BoehmRec.ACAP
Pl = P1 * BoehmRec.AEXP * BoehmRec.PCAP * BoehmRec.VEXP * BoehmRec.LEXP
P1 = PI * BoehmRec.MODP * BoehmRec.TOOL * BoehmRec.SCED * BoehmRec.RVOL

‘Calculate sums for Coefficient only

TempQ(Mode) = PI * (BoehmRec.ADJKDSI ~ ExpOnly(Mode))
SumMMQ(Mode) = SumMMA(Mode) + BoehmRec.ACTEFFORT * TempQ(Mode)
Sum@2(Mode) = Sum@2(Mode) + TempQ(Mode) * TempQ(Mode)

'Calculate sums for Coefficient and Exponent
TemplLog(Mode) = Log(BoehmRec.ADJKDSI)
TempDiv(Mode) = Log(BoehmRec.ACTEFFORT / PI)
al(Mode) = al(Mode) + TemplLog(Mode)

a2(Mode) = a2(Mode) + TemplLog(Mode) * TempLog(Mode)
dO(Mode) = dO(Mode) + TempDiv(Mode)

di(Mode) = di(Mode) + TempDiv(Mode) * Templog(Mode)

1f BoehmRec.ADJKDSI >= XlLower And BoehmRec.ADJKDSI <= XUpper Then
'Load Data to the Graph
Graph1.ThisSet = Mode
Graph1.ThisPoint = ModeCount(Mode)

C.22

1f Normalize Then
Graph1.GraphData = BoehmRec.ACTEFFORT / PI
Else
Graph1.GraphData = BoehmRec.ACTEFFORT
End If
Graph1.XPosData = BoehmRec.ADJKDS]

‘Check for maximum Effort and update if needed
If YMax < BoehmRec.ACTEFFORT Then
YMax = BoehmRec.ACTEFFORT
End If
End 1f

- more = AgiViewNext(BoehmHandle)
Loop

o

For 1 = 1 To NumModes
‘Calculate equation parameters
CoeffOnly(I) = SumMMQ(l) / SumQ2(1)
a0(l) = ModeCount(1)
Coefficient(1) = Exp((a2(1) * dO(l) - al(l) * d1(1)) / (a0(I) * a2(l) - al(l) * al(1)))
Exponent(l) = (a0(I) * d1(1) - al(l) * dO(1)) /7 (a0(Cl) * a2(l) - at(l) * al(l))

'Set mode characteristics
Graph1.ThisSet = |
Select Case |
Case 1
Graphl.lLegendText = “ORG"
Graph1.SymbolData = G_CROSS_PLUS
Grapht.Colorbata = G_BLUE

Case 2
Graphi.lLegendText = "Sp"
Graph1.SymbolData = G_CROSS_TIMES
Graphi.ColorData = G_GREEN

Case 3
Graph1.legendText = “g"

Graph?1.SymbolData = G_TRIANGLE_UP
Grapht.ColorData = G_RED

End Select
Next 1
Screen.MousePointer = Default
End Sub
Sub LoadSampleData (XLower As Single, XUpper As Single, Normalize As Integer)
Dim Mode As Integer
Const NumModes = 1
Graph1.NumSets = NumModes

Dim I As Integer

'Array subscripting
! 1 = Sample Mode

ReDim ModeCount(NumModes) As Integer
Dim P! As Double
ReDim Coefficient(NumModes) As Single
ReDim Exponent(NumModes) As Single

Dim SampleHandle As Integer
Dim RecCount As Integer

ReDim Templog(NumModes) As Double
ReDim TempDiv(NumModes) As Double

ReDim a0(NumModes) As Integer
ReDim al(NumModes) As Double
ReDim a2({NumModes) As Double
ReDim dO(NumModes) As Double
ReDim d1(NumModes) As Double

For 1 = 1 To NumModes
ModeCount(i) = 0
al(l) = O#
a2(1) = O#

SampleHandle = DBHandle
more = AgiViewFirst(Samplehandle)
Screen.MousePointer = HourGlass
Do While more
AgiViewGet Sampledandle, SampleRDS, SampleRec
RecCount = RecCount + 1

iSet appropriate Mode and update correct ModeCount
Mode = 1
ModeCount(Mode) = ModeCount(Mode) + 1

1Calcualte the Muliplier, Pl

Pl = SampleRec.Pl

‘Pl = SampleRec.RELY * SampleRec.DBSize * SampleRec.CPLX * SampleRec.EXTIME
‘Pl = Pl * SampleRec.STOR * SampleRec.VIRT * SampleRec.TURN * SampleRec.ACAP
‘Pl = Pl * SampleRec.AEXP * SampleRec.PCAP * SampleRec.VEXP * SampleRec.LEXP
‘Pl = PI1 * SampleRec.MODP * SampleRec.TOOL * SampleRec.SCED * SampleRec.RVOL

‘Calculate sums for Coefficient and Exponent
Templog(Mode) = Log(SampleRec.ACTKDSI)
TempDiv(Mode) = Log(SampleRec.ACTEFFORT / PI)
al(Mode) = al(Mode) + TemplLog(Mode)

a2(Mode) = a2(Mode) + TemplLog(Mode) * TemplLog(Mode)
d0(Mode) = d0(Mode) + TempDiv(Mode)
di(Mode) = di(Mode) + TempDiv(Mode) * TemplLog(Mode)

1f SampleRec.ACTKDS! >= XlLower And SampleRec.ACTKDSI <= XUpper Then
'Load Data to the Graph
Graph1.ThisSet = Mode
Graph1.ThisPoint = ModeCount(Mode)
1f Normalize Then
Grapht.GraphData = SampleRec.ACTEFFORT / Pl
Else
G;apM.GraphData = SampleRec .ACTEFFORT
1

Graph1.XPosData = SampleRec.ACTKDS!

'Check for maximum Effort and update if needed
If YMax < SampleRec.ACTEFFORT Then

YMax = SampleRec.ACTEFFORT
End If

End If

more = AgiViewNext(SampleHandle)
Loop

For I = 1 To NumModes
a0(1) = ModeCount(l)
Coefficient(l) = Exp((a2(l) * dOCI) - al(l1) * d1(1)) / (a0(l) * a2(1) - al(l) * al(1)))
Exponent(I) = (a0Cl) * d1(1) - al(l) * dO(I)) / (a0CI) * a2(l) - al(I) * al(I))

‘Set mode characteristics
Graph1.ThisSet = |
Select Case |

Case 1
Graph1.LegendText = “SMP1"
Graph1.SymbolData = G_CROSS_PLUS
Graphi1.ColorData = G_BLUE

Case 2

Graph1.LegendText = “SD*
Graph1.SymbolData = G_CROSS_TIMES
Graph1.ColorData = G_GREEN
Case 3

Graph1l.LegendText = “E"
Graph1.SymbolData = G_TRIANGLE_UP
Graph1.ColorData = G_RED

End Select

Next [

C.24

Screen.MousePointer = Default
End Sub

C.25

Code for BoehaCal Form

Sub cmdCalibrate Click ()

Dim Mode As String
Dim ModeCount As Integer
Dim RecCount As Integer

Dim PI As Double
Dim CoeffOnly As Single
Dim ExpOnly As Single
Dim Coefficient As Single
Dim Exponent As Single

Dim Boehmiandle As Single

Dim TempQ As Double
Dim SumMMQ As Double
Dim SumQ2 As Double

Dim Templog As Double
Dim TempDiv As Double

Dim a0 As Integer
Dim al As Double
Dim a2 As Double
Dim dO As Double
Dim d1 As Double

If optOrganic.value = True Then
Mode = “ORG"
ExpOnly = 1.05

Etself optSemiD.vValue = True Then
"we = lOlel
ExpOnly = 1,12

Elself optEmbedded.Value = True Then
Mode = H“gw
ExpOnly = 1.2

Elself optAllData.value = True Then
Mode = M“ALL™
ExpOnly = 1.16

Else
Mode = “UNK"
ExpOnly = 1.16

End If

BoehmHandle = DBHandle
more = AgiViewfirst(BoehmHandle)

SutMMQ = O#

Sumd2 = O#

ModeCount = 0

txtModeTotal.Text = Format$(ModeCount, “###0")
RecCount = 0

al = O
a2 = O#
do = O#
dl = O#

RecCount = RecCount + 1

txtRecTotal.Text = Format$(RecCount, “###0Y)

AgiViewGet BoehmHandle, BoehmRDS, BoehmRec

If Trim(BoehmRec.Mode) = Trim(Mode) Or Mode = “ALL" Then
ModeCount = ModeCount + 1
txtModeTotal.Text = Format$(ModeCount, “###0")

Pl = BoehmRec.RELY * BoehmRec.DBSIZE * BoehmRec.CPLX * BoehmRec.EXTIME
Pl = P1 * BoehmRec.STOR * BoehmRec.VIRT * BoehmRec.TURN * BoehmRec .ACAP
Pl = Pl * BoehmRec.AEXP * BoehmRec.PCAP * BoehmRec.VEXP * BoehmRec.LEXP
Pl = PI * BoehmRec.MODP * BoehmRec.TOOL * BoehmRec.SCED * BoehmRec.RVOL

‘Calculate sums for Coefficient only

TempQ = Pl * (BoehmRec.ADJKDSI ° ExpOnly)
SutMMQ = SumMMQ + BoehmRec.ACTEFFORT * TempQ
SUMA2 = Suma2 + TempQ * TempQ

‘Calculate sums for Coefficient and Exponent

C.26

TempLog = Log(BoehmRec.ADJKDSI)
TempDiv = Log(BoehmRec.ACTEFFORT / PI1)

at = al + Templog
a2 = a2 + Templog * Templog
d0 = d0 + TempDiv
dl = d1 + TempDiv * Templog
End If
more = AgiViewNext(Boehmiandle)

Loop

1f ModeCount > 0 Then
CoeffOnly = SumMMQ / SumQ2
a0 = ModeCount
Coefficient = Exp((a2 * d0 - a1l * d1) / (a0 * a2 - al * al))
Exponent = (a0 * d1 - al * d0) / (a0 * a2 - al * al)
End If

txtCoeffOnly.Text = Format$(CoeffOnly, “0.0000")
txtCoefficient.Text = format$(Coefficient, *0.0000*)
txtExponent.Text = Format$(Exponent, *0.0000")

End Sub

Sub cmdCancel Click ()
Unload FrmCalBm
End Sub

Sub Form_Load ()
txtDBName.Text = DBFileSpec
End Sub

Code for BoehmDat

Sub cmxCancel _Cli
Texti.Text =
Text2.Text =

Form

ck ()

Unload FrmBoehm

End Sub

Sub cmdFirst_Click ()
more = AgiViewFirst(DBHandle)

ComputeEffort
End Sub

Sub cmdNext_Click ()
more = AgiViewNext(D8Handle)

Computet ffort
End Sub

Sub cmdPrevious Click ()
more = AgiViewPrevious(DBHandle)

Compute€ffort
End Sub

Sub ComputeEffort

O

Dim Multiplier As Double

AgiViewGet DB
Field!.Text
Field2.Text
Field3.Text
Field4.Text
Field5.Text
Fieldé.Text
Field7.Text
Field8.Text
Field9.Text
Field10.Text
Field11.Text
Field12.Text
Field13.Text
Fietd14.Text
Field15.Text
Field25.Text

Field16.Text
Field17.Text
Field18.Text
Field19.Text
Field23.Text

Field20.Text
Field21.Text
Field22.Text
Field24.Text

Multiplier
val(Field5.Text)
Multiplier =
Val(Field12.Text)
Text1.Text =
Select Case T
Case "ORG

Effor

Case "Sp"

Effor

Case "g"

Effor

Case Else

Handle, BoehmRDS, BoehmRec
BoehmRec .RELY
BoehmRec .DBSIZE
BoehmRec.CPLX
BoehmRec .EXTIME
BoehmRec.STOR
BoehmRec.VIRT
BoehmRec . TURN
BoehmRec .ACAP
BoehmRec .AEXP
= BoehmRec.PCAP
= BoehmRec.VEXP
= BoehmRec.LEXP
= BoehmRec.MODP
= BoehmRec.TOOL
= BoehmRec.SCED
= BoehmRec.RVOL
BoehmRec . Num
BoehmRec.Year
BoehmRec . LANGUAGE
BoehmRec .Mode
BoehmRec .ESTEFFORT

BoehmRec.Pl
BoehmRec.TOTKDSI
BoehmRec .ADJKDSI
BoehmRec .ACTEFFORT

Val(Field1.Text) * val(Field2.Text) * Val(Field3.Text) * Val(Fields.Text) *
* Val(Field6.Text) * Val(Field7.Text) * Val(Field8.Text)
Multiplier * val(Field9.Text) * val(Field10.Text) * val(Field11.Text) *
* Val(Field13.Text) * Val(Field14.Text) * Val(Field15.Text) * vVal(Field25.Text)
FormatS(Multiplier#, “0.#0%)
rim(Field19.Text)

1<

3.2 * Val(Field22.Text) °~ 1.05 * Multiplier#

t# = 3# * val(Field22.Text) ~ 1.12 * Multiplier#

t

2.8 * val(field22.Text) ~ 1.2 * Multiplier#

'MsgBox
'Untoad
End Select

"Not Reading Mode from Database."
FrmBoehm

Text2.Text = FormatS(Effort#, "#, #¥#, #¥0.¥4")

End Sub

8

Sub Form_Load ()
more = AgiViewFirst(DBHandle)
ComputeEffort

End Sub

9

Code for BoehmTbl Form
Option Explicit
Sub cmdCancel _Click ()

Untoad frmBoehmTable
End Sub

C.30

Code for CompCret

Option Explicit
Dim ThesisFileSpec As String

Sub cmdCancel _Click ()
Untoad frmCompCreate 'Close ThesisHandle is in Unload
End Sub

Sub cmdCtear Click ()
while AgiViewFirst(ThesisHandle)
AgiViewbelete ThesisHandle
I1f AgiError() <> 0 Then
MsgBox “Record deletion error: “ + AgiErrorText()
End If
Wend
cmdCreate.Enabled = True
cmdCiear.Enabled = False
cmdSave.Enabled = False

End Sub
Sub cmdCreate_Click ()
Dim NumRec As Integer
Dim NumCheck As Integer
Randomi ze 'Reseeds random number generator
emdClear_Click 'Clear existing records if any

Screen.MousePointer = HourGlass
NumCheck = 0
1f chkCID.value = True Then
ThesisRec.Category = "ClD¥
NumCheck = NumCheck + 1
For NumRec = 1 To Int(Val(txtBCNum.Text))
MakeThesisRecord Val(txtCIDCoeff.Text), val(txtCIDExp.Text), Val(txtCIDSD.Text)
If AgiE€rror() <> 0 Then
MsgBox "Could not create record for Comm/Identification."
cmdClear_Click
Screen.MousePointer = Default
Exit Sub
End 1f
Next NumRec
End If
If chkNAV.value = True Then
ThesisRec.Category = “NAVY
NumCheck = NumCheck + 1
For NumRec = 1 To Int(Val(txtBCNum.Text))
MakeThesisRecord Val(txtNAVCoeff.Text), Val(txtNAVExp.Text), Val(txtNAVSD.Text)
1f AgiError() <> 0 Then
MsgBox “Could not create record for Navigation Sensors."
cmdClear_Click
Screen.MousePointer = Default
Exit Sub
End If
Next NumRec
End If
1f chkCAV.Value = True Then
ThesisRec.Category = "CAV"
NumCheck = NumCheck + 1
For NumRec = 1 To Int(Val(txtBCNum.Text))
MakeThesisRecord Val (txtCAVCoeff.Text), Val(txtCAVExp.Text), Val(txtCAVSD.Text)
1f AgiError{) < 0 Then
MsgBox "“Could not create record for Core Avionics."
cmdClear_Click
Screen.MousePointer = Default
Exit Sub
End If
Next NumRec
End If
1f chkECS.Value = True Then
ThesisRec.Category = WECS"
NumCheck = NumCheck + 1
For NumRec = 1 To Int(Val(txtBCNum.Text))

C.31

MakeThesisRecord Val(txtECSCoeff.Text), val(txtECSExp.Text), Val(txtECSSD.Text)
1f Agifrror() <> 0 Then
MsgBox “Could not create record for Electronic Combat."
cmdClear_Click
Screen.MousePointer = Default
Exit Sub
End If
Next NumRec
End If
1f chkOFF.value = True Then
ThesisRec.Category = “OFF"
NumCheck = NumCheck + 1
For NumRec = 1 To Int(Val(txtBCNum.Text))
MakeThesisRecord Val(txtOFFCoeff.Text), Val(txtOFFExp.Text), Val(txtOFFSD.Text)
1f AgiError() <> 0 Then
MsgBox "Could not create record for Offesive Sensors.®
cmdClear_Click
Screen.MousePointer = Default
Exit Sub
End If
Next NumRec
End If
I1f NumCheck = 0 Then
ErrMsg = "Please select at least one category from the check box list."
MsgBox ErrMsg
Screen.MousePointe ' = Default
Exit Sub
End If

cmdCreate.Enabled = False

cmdClear.Enabled = True

cmdSave.Enabled = True

Screen.MousePointer = Default
End Sub

Sub cmdSave_Click ()
Dim SaveHandle As Integer
Dim Filetitle As String

'Get new FileSpec

On Error Resume Next

CMDialogt.Defaul tExt = “AGI"

CMDialog1.Flags = OFN_PATHMUSTEXIST + OFN_OVERWRITEPROMPT + OFN_HIDEREADONLY +
OFN_EXTENSIONDIFFERENT

CMDialogl.Action = DLG_FILE_SAVE

if Err = 32755 Then ‘user selcted cancel button
Exit Sub
End If

On Error GoTo 0

'Test to see if new file is already open or exists

Screen.MousePointer = HourGlass

If CMDialogl.Filetitle = frmMainiCMDialogl.Filetitle Then
AgiViewClose DBHandle 'Close Open Copy
Kill CMDialog?l.Filename 'Delete Previous open copy
frmMain!mnuCloseDB.Enabled = False 'Reset menu selection
frmMain!mnuViewGraph.Enabled = False
frmMain!mnuviewTable.Enabled = False
frmMain!mnuViewData.Visible = False
frmMainimnuCalBoehm.Enabled = False
frmMainimnuStatEval .Enabled = False

Elself CMDialogl.Filetitle = “"COMPTHS.AGI" Then

Exit Sub ‘File update will be automatic upon Cancel_Click
Elself Dirs$(CMDialog1.Filename) <> "" Then '1f File exists

Kill CMDialog1.Filename ‘Delete unopened coy
End If

' Open blank file to copy into
SaveHandle = AgiFreefFile()
Filetitle = CMDialogl.Filetitle
AgiViewOpen SaveHandle, Filetitle, "CAURM
1 AgiError() <> Q Then
MsgBox “File Creation Error: " + AgiErrorText()
End 1f

C.32

' Copy current file into blank copy for saving
more = AgiViewfirst(ThesisHandle)
While more
AgiViewGet ThesisHandle, ThesisRDS, ThesisRec
AgiViewAdd SaveHandle, ThesisRDS, ThesisRec
1f AgiError() <> 0 Then
MsgBox "Error adding record to save file." + NL() + “File results undetermined."
AgiViewClose (SaveHandle)
Screen.MousePointer = Default

Exit Sub
End 1f
more = AgiViewNext(ThesisHandle)
Wend
AgiviewClose (SaveMandle) ‘ThesisHandle remains open
Screen.MousePointer = Default
End Sub

Function FindEDS! (ADDKDS! As Double, MODKDS! As Double, DELKDSI As Double) As Double
‘Solution is found by weighting the KDSI values
'These weightings are from the Softcost-R Manual page R-83
'Note the wieghtings for lines and modules have been added so as to inciude
'the effect of altering both the line and the module
FindEDS! = .53 * ADDKDSI + (.27 + .24) * MODKDSI + (.15 + .11) * DELKDSI
End Function

Function FindEX/(IME (PerTime As Double) As Double
if PerTime <= 45# Then
FindEXTIME = 1#
Else
FindEXTIME = 1.82 * (PerTime / 100#) ~ 1.305
End If
End Function

Function FindLearn (BCNUM As [nteger) As Double
'This function assumes the realtionship holds true for 6 block changes.
'But SYSCON states relationship holds for 6 years.
‘Future may need to adjust for years if block changes are not 1 year
‘The exponent comes from SYSCON, Thesis TAble §
If BCNUM >= 2 And BCNUM <= 6 Then
'No coefficient => normalize to 1.0
'Note Effect is ratio to previous BC and not the first BC
FindLearn = (BCNUM ~ (-.375)) / ((BCNUM - 1) ~ (-.375))
Else
FindLearn = 1#
End 1f
End Function

Function FindSTOR (PerMem As Double) As Double
1f PerMem <= 65# Then
FindSTOR = 1#
Else
FindSTOR = 1.94 * (PerMem / 100#) ~ 1.425
End If
End Function

Sub fForm_Load ()
Dim Filetitle As String
Dim FileSpec As String

'Open new file (agi formats only).
ThesisHandle = AgifFreefile()
Filetitle = "COMPTHS.AGI"
AgiViewOpen ThesisHandle, Filetitle, “CAUR"
1f AgiError() <> 0 Then
MsgBox "“File Open Error: " + AgiErrorText()
End If
Tablel.ViewHandle = ThesisHandle

‘Enable Appropriate Buttons
more = AgiViewfFirst(ThesisHandle)
1f more Then

cmdCreate.Enabled = false
Else

cmdClear.Enabled = False

C.33

cmdSave.Enabled = False
End If

‘Set FileSpec for Save Dialog Box

1f Right(Filetl.Path, 1) <> "\" Then
FileSpec = Filel.Path + “\" + Filetitle

Else
FileSpec = Filel.Path + Filetitle

End If

CMDialogl.Filename = FileSpec

End Sub

Sub Form,Unload (Cancel As Integer)
AgiViewClose ThesisHandle

End Sub
Sub MakeThesisRecord (Coefficient As Double, Exponent As Double, StdDev As Double)
Dim NumBC As Integer
Dim EffSDPercent As Single
Dim SD As Single
Dim EAF As Double
Dim EstEffort As Single

Dim LearnEffect As Double
SD = Val(txtFactorsSD.Text)
ThesisRec.BCNUM = Int((Val(txtBCNum.Text)) * Rnd + 1)

ThesisRec.RELY = NDEV(1, SD)

ThesisRec.DBSIZE = NDEV(1, SD)

ThesisRec.CPLX = NDEV(1, SD)

ThesisRec.TIMEUTIL = 30# + 70# * Rnd

ThesisRec.EXTIME = FindEXTIME(Val(ThesisRec.TIMEUTIL))
ThesisRec.MEMUTIL = 30# + 70# * Rnd

ThesisRec.STOR = FindSTOR(Val(ThesisRec.MEMUTIL))
ThesisRec.VIRT = NDEV(1, SD)
ThesisRec.TURN = NDEV(1, SD)
ThesisRec.ACAP = NDEV(1, SD)

LearnEffect = FindLearn(Int(ThesisRec .BCNUM))
'Spread Learning Effect to AEXP and LEXP

ThesisRec.AEXP = NDEV(1, SD) * Sqr(LearnEffect)

ThesisRec.PCAP = NDEV(1, SD)

ThesisRec.VEXP = NDEV(1, SD)

ThesisRec.LEXP = NDEV(1, SD) * Sqr(lLearnEffect)

ThesisRec.MODP = NDEV(1, SD)

ThesisRec.TOOL = NDEV(1, SD)

ThesisRec.SCED = NDEV(1, SD)

ThesisRec.RVOL = NDEV(1, SD)

EAF = ThesisRec.RELY * ThesisRec.DBSIZE * ThesisRec.CPLX * ThesisRec.EXTIME
EAF = EAF * ThesisRec.STOR * ThesisRec.VIRT * ThesisRec.TURN * ThesisRec.ACAP
EAF = EAF * ThesisRec.AEXP * ThesisRec.PCAP * ThesisRec.VEXP * ThesisRec.LEXP
EAF = EAF * ThesisRec.MODP * ThesisRec.TOOL * ThesisRec.SCED * ThesisRec.RVOL
ThesisRec.Pl = EAF

ThesisRec.ENTROPY = 1#

ThesisRec.ACTKDSI = Val(txtDevkDSI.Text) * Rnd

ThesisRec.ADDKDS! = ThesisRec.ACTKDS] * (Val(txtPerAdd.Text) / 100) * NDEV(1,

val(txtPerSD.Text) / 100)

ThesisRec.MODKDSI = ThesisRec.ACTKDSI * (Val(txtPerMod.Text) / 100) * NDEV(1,
vat(txtPersSD.Text) / 100)

ThesisRec.DELKDS] = ThesisRec ACTKDS! * (Val(txtPerDel.Text) / 100) * NDEV(1,
val(txtPerSD.Text) / 100)

ThesisRec.EDSI = FindEDSI(Val(ThesisRec.ADDKDS!), Val(ThesisRec.MODKDSI),
val(ThesisRec.DELKDS!))

EstEffort = EAF * Coefficient * (ThesisRec.ACTKDSI ° Exponent) * (ThesisRec.EDSI /
ThesisRec.ACTKDSI)

'EffSDPercent is the X of SD at the EDSI value

EffSDPercent = StdDev / ThesisRec.EDSI

ThesisRec.ACTEFFORT = Exp(Log(EstEffort) + NDEV(0, Log(1 + EffSDPercent)))

AgiViewAdd ThesisHandle, ThesisRDS, ThesisRec

End Sub

Sub txtBCNum_LostFocus ()
Dim BCNUM As Integer

C.34

BCNUM = Int(vVal(txtBCNum.Text))

1f BCNUM > 0 Then
txtBCNum,.Text = Str(BCNUM)

Else
ErrMsg = "Please select a positve value for* + NL()
ErrMsg = ErrMsg + "the number of records."
MsgBox ErrMsg
txtBCNum.Text = “10*
txtBCNum.SetFocus

End If

End Sub

C.35

Code for CompGrph Form

Option Explicit
Option Base 1

Sub

End
Sub

End
Sub

cmdCancel_Click ()
Graph1.DataReset = G_All_Data
Unload frmCompGraph

Sub

cmdorm_Click ()

If NormState = Norm_Off Then
cmadNorm.Caption = “Normalize Off"
NormState = Norm_On

Else
cmciNorm.Caption = “Normalize On®
NormState = Norm_Off

End If

Select Case DBType
Case BoehmDB
Case SampleD8
Case ThesisDB8
Case CompThesisDB8
LoadCompData XMin, XMax, NormState
Case UnknownDB
End Select

Graph1.DrawMode = G_Draw

If FileGraph = 1 Then
Graph1.0rawMode = G_Write

End If

Sub

cmdZoom_Click ()

Dim TempYMax As Single
Dim TempYMin As Single
Dim TempXMax As Single
Dim TempXMin As Single
Dim Redraw As Integer

Redraw = False

TempYMax = YMax
TempYMin = YMin
TempXMax = XMax
TempXMin = XMin

frmZoomData.Show Modal

If XMax <> TempXMax Gr XMin <> TempXMin Then
Redraw = True
Graph1.DataReset = G_All_Data
Select Case DBType
Case BoehmD8
Case SampleDB
Case ThesisDB
Case CompThesisDB
LoadCompData XMin, XMax, NormState
Case UnknownDB
End Select
End If

1f YMax <> TempYMax Then
Redraw = True
Graph1.YAxisMax = YMax
End 1f

1f YMin <> TempYMin Then
Redraw = True
Graphl.YAxisMin = YMin
End If

1f Redraw Then

End
Sub

End
Sub

Graph1.DrawMode = G_Draw
End If
1f FileGraph = 1 Then
Graph1.DrawMode = G_Write
End If
sub

Form_lLoad ()
txtDBName.Text = DBFileSpec
Screen.MousePointer = Hourglass

'set filename for saving graph
Graph1.Imagefile = “compgrph"

Graph1.NuwPoints = 100
Graph1.IndexStyle = 1 ‘Enhanced index style permits access to
‘graph 2-D arrays for scatter data.

Graph1.YAxisStyle = 2 'Permits user defined Y-origin through YAxisMin,
Graph1.YAxisTicks = 8

'Set default Axis limits for graph

YMax = 1# '‘Will increase upon reading database

YMin = O#

XMax = 3000# '‘May decrease to fit x range of data

XMin = O#

WindowState = Maximized

NormState = Norm_Off
Graphl.LeftTitle = “MM®
Graph1.BottomTitle = "Size in EDSI"
Grapht.DrawMode = G_Draw

Select Case DBType
Case BoehmDB
Case SampleDB
Case ThesisDB, CompThesisDB
LoadCompData XMin, XMax, NormState
Case UnknownDB
End Select
Screen.MousePointer = Hourglass

'Set Y-axis scale

Graph1.YAxisMax = YMax
Graph1.YAxisMin = YMin
Graph1.DrawMode = G_Draw

1f FileGraph = 1 Then
Graph!.DrawMode = G_Write

End If

Screen.MousePointer = Default

Sub

LoadCompData (XLower As Single, XUpper As Single, Normalize As Integer)
Screen.MousePointer = Hourglass

Dim Mode As Integer

Dim CIDMode As Integer

Dim NAVMode As Integer

Dim CAVMode As Integer

Dim ECSMode As Integer

Dim OFFMode As Integer

Dim NumModes As Integer
Const CatPresent = 1

Const CatAbsent = 0

Dim CIDExist As Integer
Dim NAVExist As Integer
Dim CAVExist As Integer
Dim ECSExist As Integer
Dim OFFExist As Integer

Dim | As Integer

'Array subscripting
! 1=Comm/ ID

C.37

= Navigation Sensors

= Core Avionics

= Electronic Combat Systems
z Offensive Sensors

LR XV} N

Dim P! As Double
Dim CompHandie As Integer
Dim RecCount As Integer

CompHandle = DBHandle
more = AgiViewFirst(CompHandle)
CIDExist = CatAbsent
NAVExist = CatAbsent
CAVExist = CatAbsent
ECSExist = CatAbsent
OFFExist = CatAbsent
Do while more
AgiViewGet CompHandle, ThesisRDS, ThesisRec
Select Case Trim(ThesisRec.Category)
Case “CID"
CIDExist = CatPresent
Case "“NAV*
NAVExist = CatPresent
Case "“CAV"
CAVExist = CatPresent
Case "ECS
ECSExist = CatPresent
Case "OFF"
OFFExist = CatPresent
End Select
more = AgiViewNext(CompHandle)
Loop

NumModes = 0

1f CIDExist Then
NumModes = NumModes + 1
CiDMode = NumModes

End 1f

1f NAVExist Then
NumModes = NumModes + 1
NAVMode = NumModes

End If

1f CAVExist Then
NumModes = NumModes + 1
CAVMode = NumModes

End If

1f ECSExist Then
NumModes = NumModes + 1
ECSMode = NumModes

End If

If OFFExist Then
NumModes = NumModes + 1
OFFMode = NumModes

End 1f

'Intialize all mode arrays to zero
ReDim ModeCount(NumModes) As Integer
Graph1.NumSets = NumModes
For I = 1 To NumModes

ModeCount(l) = 0
Next [

RecCount = 0
more = AgiViewFirst(CompHandle)
Do While more
AgiViewGet CompHandle, ThesisRDS, ThesisRec

RecCount = RecCount + 1

'Set appropriate Mode and update correct ModeCount
Select Case Trim(ThesisRec.Category)
Case "CID%
Mode = ClDMode
Case "NAV®

C.38

'Y)

LR

Mode = NAVMode
Case “CAV™
Mode = CAVMode
Case “ECS“
Mode = ECSMode
Case “OFF“
Mode = OFFMode
Case Else
MsgBox “Unrecognized Mode at record " + Str(RecCount) + " »
Mode = 1 .
End Select
ModeCount(Mode) = ModeCount(Mode) + 1

I1f ThesisRec.EDSI >= XLower And ThesisRec.EDS! <= XUpper Then
‘Load Data to the Graph
Graph1.ThisSet = Mode
Graph1.ThisPoint = ModeCount(Mode)
1f Normalize Then
Graph1.GraphData = ThesisRec.ACTEFFORY / ThesisRec.Pl
Else
Graph1.GraphData = ThesisRec.ACTEFFORY
End [f
Graphi.XPosData = ThesisRec.EDSI

‘Check for maximum Effort and update if needed
If YMax < ThesisRec.ACTEFFORT Then
YMax = ThesisRec.ACTEFFORT
End If
End If

more = AgiViewNext(CompHandle)
Loop

tSet mode characteristics

1f CIDExist Then
Graph1.ThisSet = ClDMode
Graph1.LegendText = “C/1D%
Graph1.SymbolData = G_CROSS_PLUS
Graph1.ColorData = G_BLUE

End If

1f NAVExist Then
Graph1.ThisSet = NAVMode
Graph1.LegendText = "“NAV"
Graph1.SymbolData = G_CROSS_TIMES
Grapht.ColorData = G_GREEN

End If

If CAVExist Then
Graph1.ThisSet = CAvVMode

Graph1.LegendText = "CORE"
Graph1.SymbolData = G_TRIANGLE_UP
Grapht.ColorData = G_RED

End If

If ECSExist Then
Graphl1.ThisSet = ECSMode
Graphl.LegendText = “E C"

Graph1.SymbolData = G_DIAMOND
Graph1.ColorData = G_BLACK
End If

If OFFExist Then
Graphi.ThisSet = OFFMode
Graph1.LegendText = “OFF"
Graphl.SymbolData = G_SQUARE
Graph1.ColorData = G_BROWN

End 1f

Screen.MousePointer = Default

End Sub

C.39

Code for DataConv Form
Option Explicit

Sub cmdCancel _Click ()
Unload frmDataConv
End Sub

Sub cmdConvert_Click ()
Dim SaveHandle As Integer
Dim Filetitle As String
Dim SourceSpec As String
Dim DestSpec As String
Dim UpToExt As Integer

‘Filetitle = "GOOD.AGI®
Filetitle = “SHELL.DBF"
If Right(Filel.Path, 1) <> "* Then
SourceSpec = Filel.Path + "* + Filetitle
Else
SourceSpec = Filel.Path + Filetitle
End If

'Get new FileSpec

UpToExt = InStr(frmMainiCMDialogl.Filename, ".")

UestSpec = Left(frmMain!CMDialogT1.Filename, UpToExt) + “DBFY

MsgBox “Destination filespec is * + DestSpec

CMDialogl.Filename = DestSpec

"CMDialogt.Defaul tExt = YAGI™

CMDialogl.Defaul tExt = “DBF™

CMDialogl.Flags = OFN_PATHMUSTEXIST + OFN_OVERWRITEPROMPT + OFN_HIDEREADONLY +
OFN_EXTENSIONDIFFERENT

On Error Resume Next

CMDialogl.Action = DLG_FILE_SAVE

1f Err = 32755 Then ‘yser selcted cancel button

Exit Sub
End 1f
On Error GoTo 0

MsgBox “Save Filetitle is " + CMDialogl.Filetitle + " ¥

‘Test to see if new file is already open or exists

Screen.MousePointer = HourGlass

If CMDialogl.Filetitle = frmMainiCMDialogl.Filetitle Then
‘AgiViewClose DBHandle 'Close Open Copy
tKill CMDialog1.Filename '‘Delete Previous open copy
'frmMainimnuCloseDB.Enabled = False ‘'Reset menu selection
'frmMain!mnuViewGraph.Enabled = False
‘frmMain!mnuViewTable.Enabled = False
‘frmMainimnuViewData.Visible = False
'frmMain!mnuCalBoehm.Enabled = False
‘frmMaintmnuStatEval .Enabled = False

‘Elself CMDialogl.Filetitle = “THSFILE.AGI" Then
‘Exit Sub ‘File update will be automatic upon Cancel_Click

Elself Dir$(CMDialogl.Filename) <> " Then tIf File exists
Kill cMDialog1.Filename Detete unopened coy

End If

'Copy shell.dbf file to hold new input
MsgBox "SourceSpec is " + SourceSpec
MsgBox "DestSpec is " + CMDialogl.Filename
On Error Resume Next
FileCopy SourceSpec, CMDialog1.Filename
1f Err = 55 Then ‘'File already open
ErrMsg = "Cannot copy an open file. Close and try again."
MsgBox ErrMsg
Screen.MousePointer = Default
Exit Sub
End If
Oon Error GoTo 0

' Open blank file in dbase format to copy into

SaveHandle = AgiFreefile()
Filetitle = CMDialogl.Filetitle

C.40

-

End
Sub

AgiViewOpen Savelandie, Filetitle, “CAUR“
1f AgiError() <> 0 Then

MsgBox *File Creation Error: ¥ + AgiErrorText()
End If

' Copy current file into blank copy for saving

' Current DBHandle must refer to a thesisDB type

more = AgiViewFirst(DBHandle)

While more
AgiViewGet DBHandle, ThesisRDS, ThesisRec
'ThesisRec.BCNUM = OldThesisRec.BCNUM
'ThesisRec.CATEGORY = OldThesisRec.CATEGORY
'ThesisRec.RELY = OtdThesisRec.RELY
'ThesisRec.DBSIZE = OldThesisRec.DBSIZE
‘ThesisRec.CPLX = OldThesisRec.CPLX
'ThesisRec . TIMEUTIL = OldThesisRec.TIMEUTIL
'ThesisRec .EXTIME = OldThesisRec.EXTIME
‘ThesisRec . MEMUTIL = OldThesisRec.MEMUTIL
'ThesisRec.STOR = OldThesisRec.STOR

'ThesisRec.VIRT = OldThesisRec.VIRT
'ThesisRec.TURN = OldThesisRec.TURN
‘ThesisRec .ACAP = OldThesisRec.ACAP
'ThesisRec.AEXP = OldThesisRec.AEXP
'ThesisRec.PCAP = OldThesisRec.PCAP
'ThesisRec.VEXP = OldThesisRec.VEXP
‘ThesisRec.LEXP = OldThesisRec.LEXP
'ThesisRec.MODP = OldThesisRec.MODOP
'ThesisRec.TOOL = OldThesisRec.TOOL

‘ThesisRec.SCED = OldThesisRec.SCED
'ThesisRec.RVOL = OldThesisRec.RVOL
'ThesisRec.Pl = OldThesisRec.Pl
'ThesisRec.ENTROPY = OldThesisRec.ENTROPY

'ThesisRec.ACTKDS! = OldThesisRec.ACTKDSI
'ThesisRec .ADDKDSI = OldThesisRec.ADDKDSI
'ThesisRec.MODKDSI = OldThesisRec.MODKDSI

'ThesisRec.DELKDS! = QldThesisRec.DELKDSI
'ThesisRec.EDSI = OldThesisRec.ESDI
'ThesisRec .ACTEFFORT = OldThesisRec.ACTEFFORT

AgiviewAdd SaveHandle, ThesisRDS, ThesisRec
1f AgiError() <> 0 Then
MsgBox "Error adding record to save file." + NL() + "File results undetermined."
AgiViewClose (SaveHandle)
Screen.MousePointer = Default
Exit Sub
End If
more = AgiViewNext(DBHandle)
Wend
AgiViewClose (SaveHandie) ‘OBHandle remains open
Screen.MousePointer = Default
Sub

Form_Load ()
Dim Filetitle As String
Dim FileSpec As String

'Open new file (agi formats only).
'Thesishandle = AgifreefFile()
'Filetitle = “SHELL.DBF"
'AgiViewOpen ThesisHandle, Filetitle, "CAUR"
'1f AgiError() <> 0 Then
'MsgBox "File Open Error: " + AgiErrorText()
'eEnd If
'Tablet.ViewNandle = ThesisHandle

'Enable Appropriate Buttons
'‘more = AgiViewFirst(ThesisHandle)
'1f more Then
'cmdCreate.Enabled = False
‘Else
‘cmdClear .Enabled = False
tcmdSave.Enabled = False
‘End 1f

C.41

'Set FileSpec for Save Dialog Box

'1f Right(Filel.Path, 1) <> “\" Then
‘FileSpec = Filel.Path + "* + Filetitle

‘Else
‘FileSpec = Filel.Path + Filetitle

'End ¢

'CMDialogl.Filename = FileSpec

End Sub

C.42

Code for DB8Create form

Option Explicit
Dim SampleFileSpec As String

Sub cmdCancel Click ()

‘emdClear _Click

Untoad frmDBCreate ‘'Close SampleHandle is in Unload
End Sub’

Sub cmdClear | Click ()
while Agtvleuflrst(SupleHandle)
AgiViewDelete SampleHandle
If AgiError() <> 0 Then
MsgBox "Record deletion error: “ + AgiErrorText()
End If
Wend
cmdCreate.Enabled = True
cmxiCleasr .Enabled = False
cmdSave.Enabled = False

End Sub
Sub cmdCreate_Click ()
Dim NumRec As Integer
Dim EffSOPercent As Single
Dim SD As Single
Dim EAF As Double
Dim EstEffort As Single
Randomize 'Reseeds random number generator

SO = Val(txtFactorSD.Text)

cmdClear_Click 'Clear existing records if any
Screen.MousePointer = HourGlass
For NumRec = 1 To Int(txtNumRec.Text)
Debug.Print “Record number # + Str$(Numkec)
SampleRec.Num = NumRec
SampleRec.Type = “XXX*
SampleRec.RELY = NDEV(1, SD)
SampleRec.DBSIZE = NDEV(1, SD)
SampleRec.CPLX = NDEV(1, SD)
SampleRec .EXTIME = NDEV(1, SD)

SampleRec.STOR = NDEV(1, SD)
SampleRec .VIRT = NDEV(1, SD)
SampleRec.TURN = NDEV(1, SD)
SampleRec.ACAP = NDEV(1, SD)
SampleRec.AEXP = NDEV(1, SD)
SampleRec.PCAP = NDEV(1, SD)
SampleRec.VEXP = NDEV(1, SD)
SampleRec.LEXP = NDEV(1, SD)
SampleRec.MODP = NDEV(1, SD)
SampleRec.TOOL = NDEV(1, SD)
SampleRec.SCED = NDEV(1, SD)

SampleRec.RVOL = NDEV(1, SD)

SampteRec.ACTKDSI = Int((Val(txtMaxKDSI.Text) - Val(txtMinkKDSI.Text) + 1) * Rnd +
Val (txtMinkDSI.Text))

E SampleRec.RELY * SampleRec.DBSIZE * SampleRec.CPLX * SampleRec.EXTIME

EAF = EAF * SampleRec.STOR * SampleRec.VIRT * SampleRec.TURN * SampleRec.ACAP
EAF = EAF * SampleRec.AEXP * SampleRec.PCAP * SampleRec.VEXP * SampleRec.LEXP
EAF = EAF * SampleRec.MODP * SampleRec.TOOL * SampleRec.SCED * SampleRec.RVOL

SampleRec.P] = EAF
EstEffort = EAF * val(txtCoefficient.Text) * ((SampleRec.ACTKDSI) ° Val(txtExponent.Text))
'EffSDPercent is the X of SD at the midpoint from Min & Max KDS!
EffSDPercent = Val(txtEffortSD.Text) / (Val(txtCoefficient.Text) * (((Val(txtMinkKDSI.Text)
+ Val(txtMaxKDSI.Text)) / 2) ~ Val(txtExponent.Text)))
SampleRec .ACTEFFORT = Exp(Log(EstEffort) + NDEV(O, Log(1 + EffSDPercent)))
AgiViewAdd SampleHandle, SampleRDS, SampleRec
1f AgiError() <> 0 Then
MsgBox “Could not add record * + Str{NumRec) + ".*
cmdClear_Click
Exit Sub
End 1f
Next NumRec
cmdCreate.Enabled = False

C.43

cmdClear.Enabled = True

cmdSave.Enabled = True

Screen.MousePointer = Default
End Sub

Sub cmdSave_Click ()
Dim SaveHandle As Integer
Dim Filetitle As String

‘Get new FileSpec . :
On Error Resume Next

CMDialogl.Defaul tExt = “AGI™

CMDialogtl.Flags = OFN_PATHMUSTEXIST + OFN_OVERWRITEPROMPT + OFN_HIDEREADONLY +

OFN_EXTENSIONDIFFERENT .
CMDialogl.Action = DLG_FILE_SAVE
If Err = 32755 Then ‘user selcted cancel button
Exit Sub
End If

On Error GoTo 0

Debug.Print “Save Filetitle is * + CMDialogl.Filetitle + " %

‘Test to see if new file is already open or exists

Screen.MousePointer = HourGlass

If CMDialogl.Filetitle = frmMainiCMDialogl.Filetitle Then
AgiViewClose DBHandle ‘Close Open Copy
Kill CMDialogtl.Filename ‘Delete Previous open copy
froMainimnuCloseDB.Enabiled = False ‘'Reset menu selection
frmMainimnuViewGraph.Enabled = False
frmMainimnuVienTable.Enabled = False
frmMainimnuViewData.Visible = False
frmMainimnuCatB8oehm.Enabled = False
frmMainimnuStatEval .Enabled = False

Elself CMDialogl.Filetitle = "NEWFILE.AGI" Then

Exit Sub 'File update will be automatic upon Cancel Click
Elself Dirs(CMDialog1.Filename) <> "* Then '1f File exists

Kill CMDialogl.Filename 'Delete unopened coy
End If

! Open blank file to copy into
SaveHandle = AgifreeFile()
Filetitle = CMDialogl.Filetitle
AgiviewOpen SaveHandle, Filetitle, "CAUR"
1f AgiError() <> 0 Then
MsgBox “File Creation Error: " + Agi€rrorText()
End If

' Copy current file into blank copy for saving
more = AgiViewFirst(SampleHandle)
while more
AgiViewGet SampleHandle, SampleRDS, SampleRec
AgiViewAdd SaveHandle, SampleRDS, SampleRec
If AgiError() <> Q0 Then
MsgBox “Error adding record to save file.” + NL() + “File results undetermined.”
AgivViewClose (SaveHandle)
Screen.MousePointer = Default

Exit 3Sub
End 1If
more = AgiViewNext(SampleHandle)
Wend
AgiViewClose (SaveHandle) 'SampleHandle is remains open
Screen.MousePointer = Default
End Sub

Sub Form_Load ()
Dim Filetitle As String
Dim FileSpec As String

'Open new file (agi formats only).
SampleHandle = AgiFreefile()
Filetitle = “NEWFILE.AGI"
AgiViewOpen SampleHandle, Filetitle, "CAUR"
1f AgiError() <> 0 Then

MsgBox "File Open Error: " + AgiErrorText()
End If

C.44

Tablel.ViewHandle = SampleHandie

‘Enable Appropriate Buttons
more = AgiViewFirst(Samplenandle)
If more Then
cmdCreate.Enabled = False
Else
cmdClear.Enabled = False
cmdSave.Enabled = false
End 1f

1Set FileSpec for Save Dialog Box

1f Right(Filel.Path, 1) <> "* Then
FileSpec = Filel.Path +« *\" + Filetitle

Else
FileSpec = Filel.Path + Filetitle

End 1f

CMDialogt.Filename = FileSpec

End Sub

Sub Form?Unload (Cancel As Integer)
AgiViewClose SampleHandle
End Sub

Sub txtEffortSD_Lostfocus ()
1f Val(txtEffortsD.Text) < O# Then
MsgBox “The Effor. Standard Deviation cannot be negative."
txtEffortSD.Text = "30. 0%
txtEffortSD.SetFocus
txtEffortSD.SelStart = 0
txtEffortSD.Sellength = 64000
End If
End Sub

Sub txtNumRec_LostFocus ()
Dim NumRec As Integer
NumRec = Int(Val(txtNumRec.Text))
I1f NumRec > O Then
txtNumRec.Text = Str{NumRec)
Else
ErrMsg = "Please select a positve value for® + NL()
ErrMsg = ErrMsg + "the number of records."
MsgBox ErrMsg
txtNumRec.Text = 10"
txtNumRec.SetFocus
End If
End Sub

C.45

Code for GenTable Form
Option Explicit
Sub cmdCancel Click ()

Unload frmYabieD8
End Sub

C.46

Code for Mair hes Form
Option Explicit

Function FindD8Type () As Integer

Dim val idBoehm As Integer
Dim validSample As Integer
Dim validThesis As Integer”
Dim ValidOldThesis As Integer
Dim ThesisCategory As String

Dim ThesisBCNum As Integer

'put record pointer on first record
more = AgiViewFirst(DBHandle)

‘Check Boehm's original database structure

AgiViewGet DBHandle, BoehmRDS, BoehmRec

1f IsNull(BoehmRec.Num) Then
val idBoehm = False

Elself IsNull(BoehmRec.Type) Then
ValidBoehm = False

Elself IsNull(BoehmRec.LANGUAGE) Then
validBoehm = False

Elself IsNull(BoehmRec.RELY) Then
Val idBoehm = False

Elself IsNull(BoehmRec.DBSIZE) Then
ValidBoehm = False

Elself IsNull(BoehmRec.CPLX) Then
ValidBoehm = False

Elself IsNull(BoehmRec.EXTIME) Then
valid8oehm = False

Elself IsNull(BoehmRec.STOR) Then
val idBoehm = False

Elself IsNull(BoehmRec.VIRT) Then
ValidBoehm = False

Elself IsNull(BoehmRec.TURN) Then
ValidBoehm = False

Elself IsNul((BoehmRec.ACAP) Then
ValidBoehm = False

Elself IsNull(BoehmRec.AEXP) Then
ValidBoehm = False

Elself IsNull(BoehmRec.PCAP) Then
validBoehm = False

Elself IsNull(BoehmRec.VEXP) Then
ValidBoehm = False

Elself IsNull(BoehmRec.LEXP) Then
validBoehm = False

Elself IsNull({BoehmRec.MODP) Then
validBoehm = False

Elself IsNull(BoehmRec.TOOL) Then
ValidB8oehm = False

Elself IsNull(BoehmRec.SCED) Then
ValidBoehm = False

Elself IsNull(BoehmRec.RVOL) Then
validBoehm = False

Elself IsNull(BoehmRec.Pl) Then
validBoehm = False

Elself IsNull(BoehmRec.Mode) Then
vValidBoehm = False

Elself 1sNull(BoehmRec.TOTKDSI) Then
ValidBoehm = False

Elself IsNull(BoehmRec.ADJKDSI) Then
Valid8cehm = False

Elself IsNull(BoehmRec .NOMEFFORT) Then
vVal idBoehm = False

Elself IsNull(BoehmRec.ESTEFFORT) Then
validBoehm = False

Elseif IsNull(BoehmRec.ACTEFFORT) Then
vValidBoehm = False

Else
ValidBoehm = True

End 1f

1f ValidBoehm Then

C.47

FindD8Type = BoehmDB

‘MsgBox “Database is Boehm's original format."

Exit Function
End If

‘Check Sample database structure

AgiViewGet DBHandle, SampleRDS, SampleRec

If IsNull(SampleRec.Num) Then
ValidSample = False

Elself IsNull(SampleRec.Type) Then
validSample = False

Elself IsNull(SampleRec.RELY) Then
validSample = False

Elself IsNull(SampleRec.DBSIZE) Then
validSample = False

Elself IsNull(SampleRec.CPLX) Then
validSample = False

Elself IsNull(SampleRec.EXTIME) Then
validSample = False

Elself IsNull(SampleRec.STOR) Then
val idSample = False

Elself IsNull(SampleRec.VIRT) Then
validSample = False

Elself IsNull(SampleRec.TURN) Then
validSample = False

Elseif IsNull(SampleRec.ACAP) Then
validSample = False

Elself IsNull(SampleRec.AEXP) Then
validSample = False

Elself IsNull(SampleRec.PCAP) Then
validSample = False

Elself IsNull(SampleRec.VEXP) Then
validSample = False

Elself IsNull(SampleRec.LEXP) Then
validSample = False

Etself IsNull(SampleRec.MODP) Then
validSample = False

Elself IsNull(SampleRec.TOOL) Then
validSample = False

Elself IsNull(SampleRec.SCED) Then
validSample = False

Elself IsNull(SampleRec.RVOL) Then
validSample = False

Elself IsNuli(SampleRec.PI) Then
validSample = False

Elself IsNull(SampleRec.ACTKDS1) Then
ValidSample = False

Elself IsNull(SampleRec.ACTEFFORT) Then
validSample = False

Else
validSample = True

End If

1f validSample Then
FindDBType = SampleDB
‘MsgBox “Database is in Sample format."
Exit Function

End If

iCheck Thesis database structure

AgiViewGet DBHandle, ThesisRDS, ThesisRec

AgiViewGet OBHandle, OldThesisRDS, OldThesisRec

val idOldThesis = False

If IsNull(ThesisRec.BCNUM) Then
validThesis = False

Elself IsNull(ThesisRec.Category) Then
validThesis = False

Elself IsNull(ThesisRec.RELY) Then
ValidThesis = False

Elself IsNull(ThesisRec.DBSIZE) Then
ValidThesis = False

Elself IsNull(ThesisRec.CPLX) Then
validThesis = False

Etself IsNull(ThesisRec.TIMEUTIL) Then
ValidThesis = False

C.48

Elself IsNull(ThesisRec.EXTIME) Then
ValidThesis = False

Elself IsNull(ThesisRec.MEMUTIL) Then
ValidThesis = False

Elself IsNull(ThesisRec.STOR) Then
ValidThesis = False

Elself IsNull(ThesisRec.VIRT) Then
ValidThesis = False

Elself IsNull(ThesisRec.TURN) Then
ValidThesis = False

Elself IsNull(ThesisRec.ACAP) Then
validThesis = False

Elself 1sNull(ThesisRec.AEXP) Then
Val idThesis = False

Elself 1sNull(ThesisRec.PCAP) Then
ValidThesis = False

Elself 1sNull(ThesisRec.VEXP) Then
ValidThesis = False

Etlself IsNull(ThesisRec.LEXP) Then
ValidThesis = False

Elself IsNull(ThesisRec.MOD”) Then
ValidThesis = False

Elself IsNull(ThesisRec.TOOL) Then
ValidThesis = False

Elself IsNull(ThesisRec.SCED) Then
ValidThesis = False

Elself IsNull(ThesisRec.RVOL) Then
validThesis = False

Elself IsNull(ThesisRec.Pl) Then
Val idThesis = False

Elself IsNull(ThesisRec.ENTROPY) Then
ValidThesis = False

Elself IsNull(ThesisRec.ACTKDSI) Then
validThesis = False

Elself IsNull(ThesisRec.ADDKDS1) Then
ValidThesis = False

Elself 1sNull(ThesisRec.MODKDSI) Then
ValidThesis = False

Elself IsNull(ThesisRec.DELKDSI) Then
ValidThesis = false

Elself IsNull(ThesisRec.EDSI) Then
Val idThesis = False
If Not IsNull(OldThesisRec.ESDI) Then

validOldThesis = True

End If

Elself IsNull(ThesisRec.ACTEFFORT) Then
ValidThesis = False

Else
validThesis = True

End I f

1f validThesis Then
FindDBType = ThesisDB
‘MsgBox "Database is in Thesis format."
ThesisCategory = Trim(ThesisRec.Category)
ThesisBCNum = Int(ThesisRec,.BCNUM)
more = AgiViewNext(D8Handle)
Do while more
AgiViewGet DBHandle, ThesisRDS, ThesisRec
- 1f ThesisCategory <> Trim(ThesisRec.Category) Or ThesisBCNum <> (Int(ThesisRec.BCNUM)
- 1) Then
FindDBType = CompThesisDB
'MggBox "Database is in composite Thesis format.®
Exit Function
End 1f
ThesisBCNum = Int(ThesisRec.BCNUM)
more = AgiViewNext(DBHandle)

Loop
Exit Function
End If
1f validOldThesis Then

FindDBType = ThesisDB
MsgBox "Database is in Old Thesis format and needs conversion."

C.49

End If

MsgBox “Database is *.dbf or *.agi format but® + NL() * "record structure does not match
required formats."
FindDBType = UnknownD8

End Function

Sub mnuCalBoehm_Click ()
Select Case DBType
Case BoehmDB
frmCal8m. Show
Case SampleD8
FrmSampCal .Show
Case ThesisDB, CompThesisD8
FrmThesCal .Show
Case UnknownD8
End Select
End Sub

Sub mnuCloseDB_Click ()
AgiViewCloseAll
mnuCloseDB.Enabled = False
mnuViewGraph.Enabled = False
mnuViewTable.Enabled = False
mnuViewData.Visible = False
mnuCalBoehm.Enabled = False
mnuStatEval .Enabled = False

End Sub

Sub mnuCreateBoehmDB_Click ()
frmDBCreate.Show
End Sub

Sub mnuCreateCompThesisDB_Click ()
frmCompCreate.Show
End Sub

Sub mnuCreateThesisDB_Click ()
frmThsCreate.Show
End Sub

Sub mnubDataConv_Click ()
frmDataConv.Show
End Sub

Sub mnuExit_Click ()
AgiViewCloseAll
End

End Sub

Sub mnuOpenDB_Click ()
AgiViewCloseAll 1Close any open DBs before open another
On Error Resume Next
cMDialog1.Flags = OFN_FILEMUSTEXIST
cMpialogl.Action = DLG_FILE_OPEN
1f Err = 32755 Then 1COERR_CANCEL
Exit Sub
End If
on Error GoTo 0

DBFileSpec = CMDialogl.Filename
DBFileName = CMDialogl.Filetitle

DBHandle = AgiFreeFile()
AgiViewOpen DBHandle, DBFileSpec, "R"
If AgiError() <> 0 Then
Select Case AgiError()
Case AGIE_DBOPEN
'ErrMsg = "Database is already open.™
Case AGIE_NOTEXIST
ErrMsg = "Database not found. Please check path and filename."
Case AGIE_BADFILE
ErrMsg = "Specified file is corrupted or* + NL() + "is not a *.dbf or *.agi file

C.50

[N

format."
Case Else
ErrMsg = AgiErrorText()
End Select
MsgBox ErrMsg + NL() + “Error#: » + Str(AgiError()).

Else
more = AgiViewFirst(DBHandle)
If more Then
mnuCloseDB.Enabled = True
DB8Type = FindDBType()
Select Case DBType
Case BoehmDB
muViewGraph.Enabled = True
mnuViewTable.Enabled = True
mruViewData.Visible = True
muCal8oehm.Enabled = True
mnuStatEval .Enabled = True
Cagse SampleDB
mnuViewGraph.Enabled = True
mnuViewTable.Enabled = True
muViewData.Visible = False
mnuCalB8oehm.Enabled = True
mnuStatEval .Enabled = False
Case ThesisDB, CompThesisDB
mnuViewGraph.Enabled = True
muViewTable.Enabled = True
mnuViewData.Visible = False
mnuCalBoehm.Enabled = True
mnuStatEval .Enabled = True
Case UnknowrDB
ErrMsg = “Format of selected database is not recognizeable." + NL()
ErrMsg = ErrMsg + “Only viewing is permitted."
MsgBox ErrMsg
mnuViewGraph.Enabled = False
mnuViewTable.Enabled = True
muViewData.Visible = False
mnuCalBoehm.Enabled = False
mruStatEval.Enabled = false
End Select
Else
AgiViewClose DBHandle
ErrMsg = "Database exists but has zero records."
MsgBox ErrMsg
End 1f
End 1f
End Sub

Sub mnuStatEval_Click ()
Select Case DBType
Case BoehmDB
frmStatBoehm. Show
Case SampleD8
Case ThesisD8
frmThesStat.Show
Case CompThesisDB
frmThesStat.Show
Case UnknownDB
End Select
End Sub

Sub mnuviewData_Click ()
FrmBoehm. Show
End Sub

Sub muviewGraph Click ()
Select Case DBType
Case BoehmDB
frmBoehmGraph.Show
Case SampleDB
frm8oehmGraph . Show
Case ThesisD8
frmThesGraph.Show
Case CompThesisDB

C.51

freCompGraph . Show
Case UnknownDB
End Select
End Sub

Sub mnuViewTable _Click ()
Select Case DBType

Case BoehmDB
fraSoehmTable. txtDBName. Text "= DBFileSpec
'frmBoetwTable.Tablel . FileName = DBFileSpec
frmBoelwmTable.Tablel.ViewHandle = DBHandle
frmBoehmTable. Shou

Case SampleDB
frmSampTable. txtD8Name.Text = DBFileSpec
frmSampTable.Tablel.FileName = DBFileSpec
frmSampTable.Table!.Viewdandle = DBHandle
frmSampTable.Show

Case ThesisDB, CompThesisDB
frmThesTable.txtDBName.Text = DBFileSpec
frmThesTable.Tablel.Viewlandle = DBHandle
frmThesTable.Show

Case UnknownDB
frmTableDB. txtDBName.Text = DBFileSpec
frmTableD8.Tabletl.Viewlandle = DBHandle
frmTableDB.Show

End Select
End Sub

Code for SampCal Form
Option Explicit

Sub cmdCalibrate _Click ()
Dim Mode As String
Dim ModeCount As Integer
Dim RecCount As Integer

Dim CoeffOnly As Single
Dim ExpOnly As Single
Dim Coefficient As Single
Dim Exponent As Single

Dim TempQ As Double
Dim SumMMQ As Double
Dim Sum@2 As Double

Dim Templog As Double
Dim TempDiv As Double

Dim a0 As Integer
Dim at As Double
Dim a2 As Double
Dim dO As Double
Dim d1 As Double

1f optOrganic.Value = True Then
Mode = "ORG"
ExpOnly = 1,05

Elself optSemiD.Value = True Then
Mode = “SD¥
ExpOniy = 1,12

Elself optEmbedded.Value = True Then
Mode = “E™
ExpOnly = 1.2

Elself optAllData.value = True Then
Mode = WALL"
ExpOnly = 1.16

Else
Mode = MUNK™
ExpOnly = 1.16

End 1If

Sampledardle = DBHandle
more = AgiViewFirst(SampleHandle)

SurMMQ = 0#

Sum@2 = O#

ModeCount = 0

txtModeTotal .Text = Format$(ModeCount, “M#¥0")
RecCount = 0

al =z O#

a2 = O#

do = O#

dl = O#

Do While more
RecCount = RecCount + 1
txtRecTotal.Text 2 format$(RecCount, "“###0u)
AgiViewGet Samplelandle, SampleRDS, SampleRec
1f Trim(SampleRec.Type) = Trim(Mode) Or Mode = "ALL" Then
ModeCount = ModeCount + 1
txtModeTotal.Text = Format$(ModeCount, “###0")

'Calculate sums for Coefficient only

TempQ = SampleRec.Pl * (SampleRec.ACTKDSI ~ ExpOnly)
SuMMMQ = SunMMQ + SampleRec.ACTEFFORT * TempQ

Suma2 = SU2 + TempQ * TempQ

‘Calculate sums for Coefficient and Exponent
Templog = Log(SampleRec.ACTKDSI)

TempDiv = Log(SampleRec .ACTEFFORT / SampleRec.PI)
al =z al + TemplLog

a2 = a2 + TemplLog * Templog

d0 = d0 + TempDiv

C.53

dl = d1 + TempDiv * Templog

End Lf
more = AgiViewNext(SampleNandle)
Loop

1¥ ModeCount > 0 Then

CoeffOnly = SuUmMQ / Suma2

a0 = ModeCount

Coefficient = Exp((a2 * d0 - al * d1) / (a0 * a2 - al * al))
ME)f(ponentttaO'dI - a1l *d0) / (a0 * a2 - al * al)
End 1

txtCoeffOnly.Text s Format$(CoeffOnly, *0.0000%)
txtCoefficient.Text = Format$(Coefficient, “0.0000%)

txtExponent.Text = Format$(Exponent, “0.0000")
End Sub

Sub cmdCancel_Click ()
Unload FrmSampCal
End Sub

Sub Form_Load ()

txtDBName.Text = DBFileSpec
End Sub

C.54

Code for SampTbl Form
Option Explicit
Sub cmdCancel_Click ()

Unload frmSampTable
End Sub

C.55

Code for ThesCal Form
Option Explicit
Sub cmdCalibrate_Click ()

Dim Category As String

Dim CategoryCount As Integer

Dim RecCount As Integer .

Dim CoeffOnly As Single .

Dim ExpOnly As Single
Dim Coefficient As Single
Dim Exponent As Single

Dim BCT As Double N
Dim TempQ As Double
Dim SumMMQ As Double
Dim SumQ2 As Double

Dim Templog As Double
Dim TempDiv As Double

Dim a0 As Integer
Dim al As Double
Dim a2 As Double
Dim d0 As Double
Dim d1 As Double

1f optCiD.Value = True Then
Category = “"CID"
ExpOnly = 1.05

Elself optNAV.Value = True Then
Category = "NAVH
ExpoOnly = 1.12

Elself optCAV.Value = True Then
Category = “CAV"
ExpOnly = 1.2

Elsel f optECS.Value = True Then
Category = "“ECS"
ExpOnly = 1.28

Elself optOFf.value = True Then
Category = “OFF"
ExpOnly = 1.36

Elself optAllData.value = True Then
Category = “ALL"
ExpOnly = 1.16

Else
Category = "UNK™"
ExpOnly = 1,16

End If

ThesisHandle = DBHandle
more = AgiViewFirst(ThesisHandle)

SumMMQ = O#

Suma2 = O#

CategoryCount = 0

txtCategoryTotal.Text = Format$(CategoryCount, "“###0")
RecCount = 0

at = O#

a2 = O

do = O#

di = O#

Do While more
RecCount = RecCount + 1
txtRecTotal.Text = Format$(RecCount, "“##¥0%)
AgiViewGet ThesisHandle, ThesisRDS, ThesisRec
I1f Trim(ThesisRec.Category) = Trim(Category) Or Category = YALL" Then
CategoryCount = CategoryCount + 1
txtCategoryTotal.Text = Format$(CategoryCount, “H#¥O")

*Calculate sums for Coefficient only

BCT = ThesisRec.EDS! / ThesisRec.ACTKDS!

TempQ = ThesisRec.Pl * (ThesisRec.ACTKDSI °~ ExpOnly) * BCT
SumMMQ = SumMMQ + ThesisRec.ACTEFFORT * TempQ

C.56

End
Sub
End
Sub
End

SumQd2 = SumQ2 + TempQ * Tempd

‘Calculate sums for Coefficient and Exponent

TemplLog = Log(ThesisRec.ACTKDSI)

TempDiv =

al = al + Templog

a2 = a2 + TemplLog * TemplLog

d0 = d0 + TempDiv

dl = d1 + TempDiv * Templog
End 1f

more = AgiViewNext(ThesisHandle)
Loop

1f CategoryCount > 0 Then
CoeffOnly = SumMMQ / SumQ2
a0 = CategoryCount

Coefficient = Exp((a2 * d0 - at * d1) / (a0 * a2 - al * al))
Exponent = (a0 * d1 - a1 * d0) / (a0 * a2 - al * al)

End If

Log(ThesisRec . ACTEFFORT / (ThesisRec.Pl * BCT))

txtCoeffOnly.Text = Format$(CoeffOnly, "0.0000")

txtCoefficient.Text = Format$(Coefficient, *0.0000")

txtExponent.Text = Format$(Exponent, "0.0000")

Sub

cmdCancel_Click ()
Unload frmThesCal
Sub

Form_Load ()
txtDBName.Text = DBFileSpec
Sub

C.57

Code for ThesStat Form
Option Explicit

Sub cmdCalc_Click ()
Dim Category As String
Dim RecCategory As String
Dim CategoryCount As Integer
Dim RecCount As Integer

Dim PI As Double
Dim BaseCoefficient As Single
Dim BaseExponent As Single
Dim PredCoefficient As Single
Dim PredExponent As Single

Dim EstEffort As Double
Dim LogEstEffort As Double
Dim ACTEFFORT As Single
Dim LogActEffort As Double
Dim ActEffMean As Double

Dim LogActEffMean As Double
Dim ThesisNandle As Single

Dim SumActEff As Double
Dim SumlLogActEff As Double

Dim SSE As Double
Dim LogSSE As Double
Dim LogSSTO As Double
Dim SumMRE As Double
Dim SumLogMRE As Double
Dim R2 As Single
Dim RRMS As Single
Dim MRE As Single
Dim LogMRE As Single

Dim MREMean As Single
Dim_PrediLevel As Single
Const MRELimit = .25

Dim ImprovelLevel As Single

1f optClD.Value = True Then
Category = "“CID"

Elself optNAV.Value = True Then
Category = "NAV"

Elself optCAV.Value = True Then
Category = "CAV"

Eiself optECS.Value = True Then
Category = “ECS"

Elself optOFf.Value = True Then
Category = "“OFF"

Elself optAllData.Value = True Then
Category = “ALL"™

Eise
Category = "“UNK"

End If

Category = Trim(Category)

BaseCoefficient = Val(txtBaseCoeff.Text)
BaseExponent = Val(txtBaseExp.Text)
PredCoefficient = Val(txtPredCoeff.Text)
PredExponent = Val(txtPredExp.Text)

ThesisHandle = DBHandle
'AgiViewOpen BoehmHandle, “boehm's.dbf",6 “R"
'Debug.Print AgiErrorText()

'Find Average of Actual Efforts in Real and Log domains
SumActEff = O#

SumLogActEff = O#

CategoryCount = 0

more = AgiViewFirst(ThesisHandle)

Do While more
AgiViewGet ThesisHandle, "CATEGORY(S)", RecCategory

C.58

1f Category = Trim(RecCategory) Or Category = “ALL" Then
CategoryCount = CategoryCount + 1
‘txtNumMode.Text = Format$(CategoryCount, “###04)
AgiViewGet ThesisHandle, “ACTEFFORT(F)", ACTEFFORT
SumMACtEff = SumACtEff + ACTEFFORT
SumLogActEff = SumLogActEff + Log(ACTEFFORT)

End 1f

more = AgiViewNext(ThesisHandle)

Loop
If CategoryCount > 0 Then
ActEffMean = SumActEff / CategoryCount
LogActEffMean = SumLogActEff / CategoryCount
Else
MsgBox "No Records found with matching Mode."
Exit Sub
End If

‘Caluclate Statistics
SSE = O#

LogSSE = O#

LogSSTO = O#

SUMMRE = O#
SumlL.ogMRE = O#
PredLevel = 0!
Improvetevel = Q!
RecCount = 0
CategoryCount = 0

more = AgiViewFirst(ThesisHandle)
txtNumMode.Text = Format$(CategoryCount, "###0v)
Do While more
RecCount = RecCount + 1
txtNumRec.Text = Format$(RecCount, "##¥0")
AgiViewGet ThesisHandle, ThesisRDS, ThesisRec
1f Category = Trim(ThesisRec.Category) Or Category = “ALL"™ Then
CategoryCount = CategoryCount + 1
txtNumMode.Text = Format$(CategoryCount, “###0")

Pl = BoehmRec.RELY * BoehmRec.DBSIZE * BoehmRec.CPLX * BoehmRec.EXTIME

Pl = PI * BoehmRec.STOR * BoehmRec.VIRT * BoehmRec.TURN * BoehmRec.ACAP
Pl = Pl * BoehmRec.AEXP * BoehmRec.PCAP * BoehmRec.VEXP * BoehmRec.LEXP
‘Pl = P1 * BoehmRec.MODP * BoehmRec.TQOL * BoehmRec.SCED * BoehmRec.RVOL
EstEffort = ThesisRec.Pl *

PredCoefficient * (ThesisRec.ACTKDSI ° PredExponent) *
(ThesisRec .EDSI / ThesisRec.ACTKDSI)

LogEstEffort = Log(EstEffort)

MRE = Abs(ThesisRec.ACTEFFORT - EstEffort)

LogMRE = Abs(Log(ThesisRec.ACTEFFORT) - LogEstEffort)

‘Calculate sums
SSE = SSE + MRE ~ 2
LOgSSE = LogSSE + LOgMRE ~ 2
LogSSTO = LogSSTO + (Log(ThesisRec.ACTEFFORT) - LogActEffMean) ~ 2
SUMMRE = SUTMRE + MRE
1f MRE / ThesisRec.ACTEFFORT <= MRELimit Then
PredLevel = PredlLevel + 1#
End 1f
I1f MRE < Abs(ThesisRec . ACTEFFORT - (ThesisRec.Pl * BaseCoefficient *
(ThesisRec.ACTKDS] ° BaseExponent) * (ThesisRec.EDSI / ThesisRec.ACTKDSI))) Then
ImproveLevel = ImprovelLevel + 1#
End if
End 1f
more = AgiViewNext(ThesisHandle)
Loop
'AgiViewClose BoehmHandle

1f CategoryCount > 0 Then
R2 = 1 - (LogSSE * (CategoryCount - 1)) / (LogSSTO * (CategoryCount - 2))
RRMS = (Sqr(SSE / CategoryCount)) / ActEffMean
MREMean = SumMRE / CategoryCount
PredLevel = (PredLevel / CategoryCount) * 100
ImproveLevel = (Improvelevel / CategoryCount) * 100
End If

Text3.Text = Format$(R2, "0.0000")
Texts.Text = Format$(RRMS, *0.000")

C.59

TextS.Text = Format$(MREMean, "“0.00%)

Text6.Text = Format$(Predievel, “#0.0%) + uxu

Text9.Text = Format$S(ImprovelLevel, "#0.0%) + ux»
End Sub

Sub cmdCancel Click ()

Untoad frmThesStat
End Sub

C.60

Code for ThesTabl Form
Option Explicit
Sub cmdCancel_Click ()

Unload frmThesTable
End Sub

C.61

Code for ThesYAxs Form
Option Explicit

Sub cmdCancel Click ()
Unload frmYAxis
End Sub

Sub emdOK_Click ()
NormState = Norm_Off
frmThesGraph!cmdNorm.Enabled = False
If optEXTIME.Value = True Then
YPick = Executable Time
frmThesGraphiGraphT.LeftTitle = “EXTIME®
Elself optTimeUtil.value = True Then
YPick = Time_Util
frmThesGraph!Graphl.LeftTitle = "Time X"
Elself optStor.value = True Then
YPick = Storage
frmThesGraph!Graphl.LeftTitle = "STOR"
Elself optMemUtil.value = True Then
YPick = Mem Util
frmThesGraph!Graphi.LeftTitle = "Mem %"
Etself optPi.value = True Then
YPick = Pi_Mult
frmThesGraph!Graphi.LeftTitle
Elself optAexp.Vaiue = True Then
YPick = Analyst_Experience
frmThesGraph!Graphl.LeftTitle = “AEXP®
Elself optlexp.value = True Then
YPick = Lang_Experience
frmThesGraph!Graphl.LeftTitle = "LEXP"
Elself optActkDSI.value = True Then
YPick = Actual_KDSI
frmThesGraph!Graphl.LeftTitle = "Actual KDSI"
Elself optEDSI.vValue = True Then
YPick = Equivalent_DSI |
frmThesGraph!GraphT.LeftTitle = “Equiv KDSI"
Elself optActEffort.vValue = True Then
frmThesGraph!cmdNorm.Enabled = True
YPick = Actual_Effort
ftf'mThesGrapMGrapM.LeftTitle = UMy
End |

IIPI [}

Unload frmYAxis
End Sub

Sub Form_Load ()
Select Case YPick
Case Executable_Time
OptEXTIME.Value = True
Case Time_util
optTimeUtil.value = True
Case Storage
optStor.Value = True
Case Mem Util
optMemUtil.value = True
Case Pi_Mult
optPi.Value = True
Case Analyst_Experience
optAexp.Value = True
Case Lang_Experience
optLexp.vValue = True
Case Actual _KDS!
optActkDSI.value = True
Case Equivalent_DSI
optEDS!.Value = True
Case Actual_Effort
optActEffort.value = True
End Select
End Sub

C.62

.

Code for ThsCrest Form

Option Explicit

Dim

Sub

End
Sub

End
Sub

ThesisFileSpec As String

cmdCancel_Click ()
‘emdClear Click

Unload frmThsCreate ‘Close SampleHandle is in Unload

Sub .

cmdclenr,Click QO :
while AgiViewFirst(ThesisHandle)
AgiViewDelete ThesisHandle
If Agi€rror() <> 0 Then
MsgBox “Record deletion error: ¥ + AgiErrorText()
End If .
Wend h
cmiCreate.Enabled = True
cmdClear.Enabled = False
cmdSave.Enabled = False

Sub

cmdCreate Click ())
Dim NumBC As Integer

Dim NumRec As Integer

Dim EffSDPercent As Single

Dim SO As Single

Dim EAF As Double

Dim EstEffort As Single

Dim Prev8C As ThesisType

Dim LearnEffect As Double

'‘Dim EstEffort As Single

Randomi ze 'Reseeds random number generator

S0 = Val(txtFactorsSD.Text)
cmdClear_Click Clear existing records if any

'Create record from Development Data

ThesisRec.BCNUM = 1

1f optCiD.Value = True Then
ThesisRec.Category = “CID"

Elself optNAV.Value = True Then
ThesisRec.Category = "NAV"

Elself optCAV.Value = True Then
ThesisRec.Category = “CAV"

Elself optECS.vValue = True Then
ThesisRec.Category = “ECS"

Elself optOFF.Value = True Then
ThesisRec.Category = “OFF"

End If

ThesisRec.RELY = NDEV(1, SD)

ThesisRec.DBSIZE = NDEV(1, SD)

ThesisRec.CPLX = NDEV(1, SD)

ThesisRec.TIMEUTIL = val(txtDevTime.Text)

ThesisRec.EXTIME = FindEXTIME(Val(ThesisRec.TIMEUTIL))

ThesisRec . MEMUTIL = Val(txtDevMem.Text)

ThesisRec.STOR = FindSTOR(Val(ThesisRec MEMUTIL))

ThesisRec.VIRT = NDEV(1, SD)
ThesisRec.TURN = NDEV(1, SD)
ThesisRec.ACAP = NDEV(1, SD)
ThesisRec.AEXP = NDEV(1, SD)
ThesisRec.PCAP = NDEV(1, SD)
ThesisRec.VEXP = NDEV(1, SD)
ThesisRec.LEXP = NDEV(1, SD)
ThesisRec.MODP = NDEV(1, SD)
ThesisRec.TOOL = NDEV(1, SD)
ThesisRec.SCED = NDEV(1, SD)

ThesisRec.RVOL = NDEV(1, SD)

EAF = ThesisRec.RELY * ThesisRec.DBSIZE * ThesisRec.CPLX * ThesisRec.EXTIME
EAF = EAF * ThesisRec.STOR * ThesisRec.VIRT * ThesisRec.TURN * ThesisRec.ACAP
EAF = EAF * ThesisRec.AEXP * ThesisRec.PCAP * ThesisRec.VEXP * ThesisRec.LEXP
EAF = EAF * ThesisRec.MOOP * ThesisRec.TOOL * ThesisRec.SCED * ThesisRec.RVOL
ThesisRec.Pl = EAF

C.63

ThesisRec.ENTROPY = 1#
ThesisRec . ACTKDS] = Val(txtDevkDSI.Text)
ThesisRec .ADDKDS! = ThesisRec.ACTKDS] * (Val(txtPerAdd.Text) / 100) * NDEV(1,
Val(txtPerSD.Text) / 100)
ThesisRec.MODKDS! = ThesisRec.ACTKDSI * (val(txtPerMod.Text) / 100) * NOEV(1,
Val(txtPersSD.Text) / 100)
ThesisRec.DELKDS! = ThesisRec.ACTKDSI * (Val(txtPerDel.Text) / 100) * NDEV(1,
Val(txtPersSD.Text) / 100)
ThesisRec.EDS] = FindEDSI(Val(ThesisRec.ADDKDSI), Val(ThesisRec.MODKDSI), *
Val(ThesisRec.DELKDSI)) *
EstEffort = EAF * val(txtCoefficient.Text) * (ThesisRec.ACTKDS] ~ val(txtExponent.Text)) *
(ThesisRec.EDSI / ThesisRec.ACTKDSI)
'EffSDPercent is the X of SD at the EDSI value
EffSDPercent = Val(txtEffortSD.Text) / ThesisRec.EDSI .
ThesisRec.ACTEFFORT = Exp(Log(EstEffort) + NDEV(O, Log(1 + EffSDPercent)))
AgiViewAdd ThesisHandle, ThesisRDS, ThesisRec
If Agi€rror() <> 0 Then
MsgBox "Could not create first record."
cmdClear_Click
Exit Sub
End If

‘Create Time series records for remaining block changes
PrevBC = ThesisRec ‘Hold prior years data
Screen.MousePointer = HourGlass
For NumRec = 2 To Int(Val(txtBCNum.Text))
ThesisRec = Prev8C 'Intialize this block change data
ThesisRec.BCNUM = NumRec
[f PrevBC.TIMEUTIL < 95# Then
‘Increase at KDS! growth rate
ThesisRec.TIMEUTIL = PrevBC.TIMEUTIL * (1# + ((PrevBC.ADDKDSI - PrevBC.DELKDSI) /
PrevBC.ACTKDSI))
Else
'Increase half remaining
ThesisRec.TIMEUTIL = PrevBC.TIMEUTIL + (.5 * (100# - PrevBC.TIMEUTIL))
End If
1f ThesisRec.TIMEUTIL > 100# Then
MsgBox "The Throughput growth has exceed 100X capacity® + NL() + "in block change » +
Str(NumRec) + " "
Exit for
End If
ThesisRec.EXTIME = FindEXTIME(Val(ThesisRec.TIMEUTIL))
If PrevBC.MEMUTIL < 95# Then
'Increase at KDSI growth rate
ThesisRec .MEMUTIL = PrevBC.MEMUTIL * (1# + ((PrevBC.ADDKDS! - PrevB8C.DELKDSI) /
PrevBC.ACTKDSI))
Else
‘Increase half remaining
ThesisRec.MEMUTIL = PrevBC.MEMUTIL + (.5 * (100# - PrevBC.MEMUTIL)) ‘add half
remaining
End If
If ThesisRec.MEMUTIL > 100# Then
MsgBox "The memory growth has exceed 100X capacity® + NL() + *in block change “ +
Str(NumRec) + " %
Exit for
End If
ThesisRec.STOR = FindSTOR(Val(ThesisRec.MEMUTIL))
LearnEffect = FindLearn(Int(ThesisRec.BCNUM))
'Spread Learning Effect to AEXP and LEXP
ThesisRec . AEXP = PrevBC.AEXP * Sqr(LearnEffect)
ThesisRec .LEXP = PrevBC.LEXP * Sqr(LearnEffect)
EAF = ThesisRec.RELY * ThesisRec.DBSIZE * ThesisRec.CPLX * ThesisRec.EXTIME
EAF = EAF * ThesisRec.STOR * ThesisRec.VIRT * ThesisRec.TURN * ThesisRec.ACAP
EAF = EAF ™ ThesisRec.AEXP * ThesisRec.PCAP * ThesisRec.VEXP * ThesisRec.LEXP
EAF = EAF * ThesisRec.MODP * ThesisRec.TOOL * ThesisRec.SCED * ThesisRec.RVOL
ThesisRec.Pl = EAF

ThesisRec.ACTKDSI = PrevBC.ACTKDS! + PrevBC.AODKDSI - PrevBC.DELKDSI

ThesisRec.ADDKDS] = ThesisRec.ACTKDSI * (Val(txtPerAdd.Text) / 100) * NDEV(1,
val(txtPersSD.Text) / 100)

ThesisRec.MOOKDS! = ThesisRec.ACTKDSI * (val(txtPerMod.Text) / 100) * NDEV(1,
val(txtPerSD.Text) / 100)

ThesisRec .DELKDS! = ThesisRec.ACTKDSI * (val(txtPerDel.Text) / 100) * NDEV(1,
val(txtPerSD.Text) / 100)

C.64

ThesisRec.EDSI = FindEDSI(Val(ThesisRec.ADDKDSI), Val(ThesisRec.MODKDS!),
Val(ThesisRec.DELKDS1))
EstEffort = EAF * vVal(txtCoefficient.Text) * (ThesisRec.ACTKDSI
(ThesisRec.EDS! / ThesisRec.ACTKDSI)
'EffSDPercent is the X of SD at the EDSI value
EffSDPercent = Val(txtEffortSD.Text) / ThesisRec.EDSI
ThesisRec.ACTEFFORT = Exp(Log(EstEffort) + NDEV(O, Log(1 + EffSDPercent)))
AgiViewAdd ThesisHandle, ThesisRDS, ThesisRec
If AgiError() <> 0 Then
MsgBox “File Error: Could not add block change # + Str(NumRec) + “.*
cmdClear_Click
Exit Sub
End 1f
PrevBC = ThesisRec ‘Hold previous block change data
Next NumRec
cmdCreate.Enabled = False
cmciClear.Enabled = True
cmdSave.Enabled = True
Screen.MousePointer = Default
End Sub

Val(txtExponent.Text)) *

Sub cmdSave_Click ()
Dim SaveHandle As Integer
Dim Filetitle As String

tGet new FileSpec

On Error Resume Next

CMDialogl.Defaul tExt = WAGI™

CMDialogl1.Flags = OFN_PATHMUSTEXIST + OFN_OVERWRITEPROMPT + OFN_HIDEREADONLY +
OFN_EXTENSIONDIFFERENT

CMDialogl.Action = DLG_FILE_SAVE

1f Err = 32755 Then ‘user selcted cancel button

Exit Sub
End 1f
Oon Error GoTo O

Debug.Print "Save Filetitle is * + CMDialogt.Filetitle + " ¢

‘Test to see if new file is already open or exists

Screen.MousePointer = HourGlass

If cMDialogl.Filetitle = frmMainiCMDialogl.Filetitle Then
AgiViewClose DBHandle ‘Close Open Copy
Kill CMDialogl.Filename 'Delete Previous open copy
frmMainimnuCloseDB.Enabled = False ‘'Reset menu selection
fraMainimnuViewGraph.Enabled = False
frmMainimnuViewTable.Enabled = False
freMain!mnuViewData.Visible = False
frmMain!mnuCalBoehm.Enabled = False
frmMainimnuStatEval .Enabled = False

Elself CMDialog1.Filetitle = "THSFILE.AGI" Then
Exit Sub ‘File update will be automatic upon Cancel_Click

Elself Dir$(CMDialogl.Filename) <> ““ Then ‘1f File exists
Kill CMDialogl.Filename ‘Delete unopenei coy

End If

' Open blank file to copy into
SaveHandle = AgiFreefile()
Filetitle = CMDialogl.Filetitle
AgiViewOpen SaveHandle, Filetitle, "CAUR"
1f AgiError() <> 0 Then
MsgBox “File Creation Error: " + AgiErrorText()
End If

' Copy current file into blank copy for saving
more = AgiViewFirst(ThesisHandle)
while more
AgiViewGet ThesisHandle, ThesisRDS, ThesisRec
AgiViewAdd SaveHandle, ThesisRDS, ThesisRec
1f AgiError() <> 0 Then
MsgBox "Error adding record to save file."® + NL() + "File results undetermined."
AgiViewClose (SaveHandlie)
Screen.MousePointer = Default
Exit Sub
End 1f
more = AgiViewNext(ThesisHandle)

C.65

Wend
AgiviewClose (SaveHandle) '‘Sampledandle is remains open
screen.MousePointer = Default

End Sub

Function FindEDSI (ADDKDSI As Double, MODKDSI As Double, DELKDSI As Double) As Double
'Solution is found by weighting the KDSI values
‘These weightings are from the Softcost-R Manual page R-83
‘Note the wieghtings for Lines and modules have been added so as to include
tthe effect of altering both the lLine and the module
FindEDSI = .53 * ADNKDSI + (.27 + .24) ™ MODKDSI + (.15 + .11) * DELKDSI
End function

Function FindEXTIME (PerTime As Double) As Double
1f PerTime <= 65# Then
FindEXTIME = 1#

se
FindEXTIME = 1.82 * (PerTime / 100#) °~ 1.305
End If
End Function

El

Function FindLearn (BCNUM As [nteger) As Double
'This function assumes the realtionship holds true for 6 block changes.
'But SYSCON states relationship holds for 6 years.
‘Future may need to adjust for years if block changes are not 1 year
‘The exponent comes from SYSCON, Thesis TAble 5
1f BCNUM >= 2 And BCNUM <3 6 Then
‘No coefficient => normalize to 1.0
‘Note Effect is ratio to previous BC and not the first BC
) FindLearn = (BCNUM - (-.375)) / ((BCNUM - 1) ° (-.375))
Else
findLearn = 1#
End If
End Function

Function FindSTOR (PerMem As Double) As Double
1f PerMem <= 65# Then

FindSTOR = 1#
Else
FindSTOR = 1.94 * (PerMem / 100#) ~ 1.425
End If
End Function

Sub Form_Load ()
pim Filetitle As String
Dim FileSpec As String

10pen new file (agi formats only).
ThesisHandle = AgiFreefile()
Filetitle = “THSFILE.AGI"
AgiViewOpen ThesisHandle, Filetitle, "CAUR"
1f AgiError() <> 0 Then
MsgBox “File Open Error: " + AgiErrorText()
End If
Tablel.viewHandle = ThesisHandle

‘Enable Appropriate Buttons
more = AgiViewFirst{ThesisHandle)
1f more Then

cmdCreate.Enabled = False
Else
: cmdClear.Enabled = False
cmdSave.Enabled = False
End If

1Set FileSpec for Save Dialog Box
1f Right(Filel.Path, 1) <> "\" Then
FileSpec = Filel.Path + "\" + Filetitle

Else
FileSpec = Filel.Path + Filetitle
End If
CMDialogl.Filename = FileSpec
End Sub

C.66

Sub Fom'Unload (Cancel As Integer)
AgiViewClose ThesisHandle
End Sub

Sub txtBCNum LostFocus ()
Dim BCNUR As Integer .
BCNUM = Int(Val(txtBCNum.Text))
If BCNUM > 0 Then
txtBCNum.Text = Str(BCNUM)
Else
ErrMsg = “Please select a positve value for® + NL()
ErrMsg = Errisg + “the number of records."
MsgBox ErrMsg
txtBCNum. Text = w10%
txtBCNum.SetFocus
End If
End Sub

C.67

Code for ThsGraph Form
Option Explicit

Sub cmdCancel_Click ()
Graph1.DataReset = G_All_Data
Unload frmThesGraph

End Sub

Sub cmdNorm_Click ()

If NormState = Norm Off Then
cadNorm.Caption = “Normalize Off®
NormState = Norm_On

Else
cmciNorm.Caption = "Normalize On"
NormState = Norm Off

End If

YPick = Actual_Effort
LoadThesisData NormState, YPick

Graph1.DrawMode = G_Draw
If FileGraph = 1 Then
Graphi.DrawMode = G_Write
End If
End Sub

Sub cmdYAxis Click ()
frmYAxis.Show Modal

LoadThesisData NormState, YPick

Graph1.0rawMode = G_Draw
If FileGraph = 1 Then
Graph1.0rawMode = G_Write
End If
End Sub

Sub Form_Load ()
txtDBName.Text = DBFileSpec

'set filename for saving graph
Graphl.Imagefile = "“thesgrph*

Screen.MousePointer = HourGlass
WindowState = Maximized

NormState = Norm_Off

Graphl.LeftTitle = MM
Graph1.BottomTitle = "Block Change Number"
Graph1.0rawMode = G_Draw

YPick = Actual_Effort
LoadThesisData NormState, YPick
Screen.MousePointer = HourGlass

Graph1.0rawMode = G_Draw

If FileGraph = 1 Then
Graphi.DrawMode = G_Write

End If

If FileGraph = 1 Then
Graph1.DrawMode = G _Write

End If

Screen.MousePointer = Default

End Sub

Sub LoadThesisData (Normalize As Integer, YChoice As Integer)
Dim BCCount As Integer

Graph1.NumPoints = AgiViewCount(DBHandle)
Graphl.IndexStyle = 1 ‘'Enhanced index style permits access to
'arrays for holding data.

‘Set mode characteristics
Graphi.ThisSet = 1

C.68

Graph1.ThisPoint = 1

‘Array subscripting
1

= Comm / ID
' 2 = Navigation Sensors
' 3 = Core Avionics
' 4 s Electronic Combat Systems
)

5 = Offensive Sensors
more = AgiViewFirst(DBHandle)
1f more Then
AgiviewGet DBHandle, ThesisRDS, ThesisRec
Select Case Trim(ThesisRec.Category)
Case “CID¥
Graph1.LegendText = “C/[D¥
Graph1.SymbolData = G_CROSS_PLUS
Graph1.ColorData = G_BLUE
Case “NAV"
Graphl.LegendText = “NAVY
Graph1,SymboiData = G_CROSS_TIMES
Graphi.ColorData = G_GREEN
Case "“CAV®
Grapht.LegendText = “CORE"
Grapht.SymbolData = G_TRIANGLE_UP
Grapht.ColorData = G_RED
Case “ECS"
Graphl.LegendText = “E C*
Graph1.SymbolData = G_DIAMOND
Graphi.ColorData = G_BLACK
Case “OFFY
Graphi.LegendText = “QFf"
Graph1.SymbolData = G_SQUARE
Graph1.ColorData = G_BROWN
End Select
End If

‘Load the data to the graph
BCCount = 0
more = AgiViewfirst(DBHandle)
Screen.MousePointer = HourGlass
Do While more
AgiViewGet DBHandle, ThesisRDS, ThesisRec
BCCount = BCCount + 1
Graph1.ThisPoint = BCCount
Graph1.XPosData = BCCount
1f Normalize Then
'Graph1.GraphData = ThesisRec.ACTEFFORY / ThesisRec.Pl
'Note below use default coefficient and exponent
Graph1.GraphData = ThesisRec.Pl * 2.85 * (ThesisRec.ACTKDSI “ 1.i5) * (ThesisRec.EDS!
/ ThesisRec.ACTKDSI)
Else
Select Case YChoice
Case Executable_Time
Graph1.GraphData = ThesisRec.EXTIME
Case Time_Util
Graph1.GraphData = ThesisRec.TIMEUTIL
Case Storage
Graph1.GraphData = ThesisRec.STOR
Case Mem Util :
Graph1.GraphData = ThesisRec .MEMUTIL
Case Pi_Mult
Graph1.GraphData = ThesisRec.Pl
Case Analyst_Experience :
Graphi.GraphData = ThesisRec.AEXP
Case Lang_Experience
GraphT.GraphData = ThesisRec.LEXP
Case Actual_KDSI
Graph1.GraphData = ThesisRec.ACTKDSI
Case Equivalent DSI
Graph1.GraphData = ThesisRec.EDS!
Case Actual_Effort
Graph1.GraphData = ThesisRec.ACTEFFORT
End Select
End If
‘Debug.Print S.r(Graphl.GraphData)

C.69

more = AgiViewNext(DBHandle)

Loop
Screen.MousePointer = Default
End Sub -

C.70

Code for ZoomData form

Option Explicit

Dim TempYMax As Single
Dim TempYMin As Single
Dim TempXMax As Single
Dim TempXMin As Single

Sub cmdCancel _Click ()
Unload frmZoomData

End Sub

Sub cmdOK_Click ()
YMax = Val{txtYMax.Text)
YMin = Val(txtYMin.Text)
XMax = Val(txtXMax.Text)
XMin = Val(txtXMin.Text)

Unload frmZoomData
End Sub

Sub cmdReset_Click ()
txtYMax.Text = Str(TempYMax)

txtYMin.Text = Str(TempYMin)
txtXMax.Text = Str(TempXMax)
txtXMin.Text = Str(TempXMin)
txtYMax.SetFocus

End Sub

Sub Form_Load ()
txtYMax.Text = Str(YMax)
txtYMin.Text = Str(YMin)
txtXMax.Text = Str(XMax)
txtXMin.Text = Str(XMin)
TempYMax = YMax
TempYMin = YMin
TempXMax = XMax
TempXMin = XMin

End Sub

C.71

Appendix D

Block Change Process Models

D.1

Table of Contents

Object Oriented Design Models D.3
Data Dictionary D.3
Software Support Object Diagram D.10
Software Support Data Flow Diagram D.11
Series Software Support Data Flow Diagram D.12

Sacramento ALC Block Change Process D.13

MIL-HDBK-347 Block Change Process D.14

Object Oriented Design Models

Data Dictionary
.]

Data Dictionary Entry Format and Definitions

Entity Label = Entity Role: Definition

where

Entity Label is the name of the entity appearing in the
diagram.

":=" is "defined as"

Entity Role is the role the entity plays in the diagram.
Roles are either

Objects, Processes, Attributes, Data, or Relationships.

Definition is the definition of the entity within the context

of the model.

a) Objects are physical or abstract actors that have meaning in
the problem space.

b) Objects are characterized by Attributes and are linked together
by Relationships.

c) Attributes are features of an Object that have meaning in the
problem space and need to be maintained in the model space.

d) Relationships describe how one Object interacts with another.
e) Data is information used or created by a Process.

Approved ECP := Object: Engineering Change Proposal that has been reviewed and
approved by the Configuration Control Board and is to be included in the current
block change cycle

Approves ;= Relationship: "the CCB approves the ECP"

Avadilability := Attribute: describes how much time computer assets owned by the
SSA can be used during the development phase of the current block change cycle

Block_Change = Object: all materials produced by the SS4 during the block change
process that are released to the field

D.3

CCB := Object: formal group (Configuration Control Board) comprised of User
personnel and SSA personnel responsible for reviewing and approving all changes to
be made to the Product Baseline during the current block change cycle

CCB _Process := Process: actions taken by the CCB to review and approve an ECP
for inclusion in the current block change

Change/Problem Report := Object. standard forms that describe, in terms of
requirements, what needs to be added, deleted, or modified in the Product Baseline

Change Requests := Data: standard form that describes, in terms of requirements,
what needs to be added, deleted, or modified in the Product Baseline

Code = Object: the executable component of Sofrware

Complexity = Attribute: describes the design/structure of the including the
completeness and readability of the available documentation, readability of the
available code listings, and the degree of coupling and cohesion within the Code
itself

Cost := Attribute: estimate in dollars of the Resources needed to complete the ECP

Data Size = Attribute: size of the database/data st-uctures required by the Code to
perform it's function according to the Requirements

Demonstrates := Relationship: "the Test Plan demonstrates the Block Change (meets
the user's requirements)"

Depot MX := Object: Depot maintenance Manuals for the weapon system
Description := Attribute: the portion of the Change:Problem Report that describes
what is wrong or what needs to be done to the software which forms the requirement

for the next block change cycle

Design Docs := Object: documents (generally delivered with the software) that
describe the software design at various levels of abstraction

Develop Changes = Process: translation by the SSA of the approved ECP into
executable software for Ground Integration Test

Development Paradigm := Attribute: the specific engineering management method
used to plan and track the Develop Changes process

Draft ECP := Data: ECP prior to approval by the CCB

D.4

ECP := Object: collection of one or more Change Problem Reports that have been
approved for inclusion into the Product Baseline during the next block change cycle

Efficiency = Attribute: the average SS4 manhours of effort it takes to change a
single line of code measured from the Effort Estimation process to the delivery of a
test tape to the Ground Integration Test process

Equipment ;= Object: Computer hardware, software, and tool sets owned by the
SSA that can be applied to the current block change cycle

Estimate Effont := Process: comprises investigating, prioritizing, and estimating the
effort required to implement each Problem Repont and Change Request waiting to be
implemented in the current block change cycle

Effort Estimate := Data: documented result of the Effort Estimate process

Experience = Attribute: describes SS4 programmer and analyst personnel
experience with the software being modified and with the SSA Equipment

Field Change = Process: distributing the Updated Tapes & Manuals to the User
Field MX := Object: current configuration manuals used by the Field MX Personnel

Field MX Personnel := Object: weapon system maintainers that are assigned to the
weapon system's base of operations

Fielded to := Relationship: "the Block Change is fielded to the User"
Fliers := Object: weapon system operators
Flight Crew = Object: current configuration manuals used by Fliers

Flight Failed Tape := Data: Software with major problems that were uncovered
during Flight Test requiring Rework

Flight Problems Not Waivered := Data: Software with minor problems uncovered
during Flight Test that requires Rework

Flight Test ;= Process: software testing that occurs on one or more test aircraft in
support of development testing or operational testing

Flight Test Equipment := Object: the aircraft to be used during Flight Test

Flight Test Plan := Object: documentation that describes the objectives of the Flight
Test process in terms of Flight Test Procedures, Equipment, and Results

D.5

Flight Test Procedures := Object: documentation describing the mission profiles, and
series of actions to be used during the Flight Test process

Flight Test Results = Object: documentation describing the outcome of the Flight
Test process

FT Schedule = Attribute: description of the availability of Flight Test Equipment

Ground Integration Test := Process: software ground testing done in the avionics
system integration facility or other system mockup

Ground Test Equipment = Object: hardware and facilities used during Ground
Integration Test

Ground Test Plan .= Object: documentation describing the objectives of the Ground
Integration Test process in terms of procedures, equipment, and results

Ground Failed Tape = Data: software with major problems that were uncovered
during Ground Integration Test requiring Rework

GT Speed := Attribute: description of the speed of the host computer used during
Ground Integration Testing

GT Memory := Attribute: description of the amount of unused memory in the host
computer used during Ground Integration Testing

GT Procedures = Object: documentation describing the series of actions to be
accomplished during the Ground Integration Test process

GT Results = Object: documentation describing the outcome of the Ground
Integration Test process

Integrated W aivered Tape = Data: Software with minor problems discovered during
the Ground Integstion Test process that is being released to the Flight Test process

Integrated Tape := Data: Software with no problems discovered during the Ground
Integration Test process that is being released to the Flight Test process

Integration Problems Not Waivered := Data: Software with minor problems
discovered during the Ground Integration Test process that requires Rework

Local Policy := Object: documentation that describes the SSA software Development
Paradigm, and Standards

D.6

Manuals = Object: family of documents describing the weapon system operation and
maintenance practices and procedures

Memory = Attribute: description of the unused portion of the Target Computer RAM
and ROM

Minor Flight Problems := Data: Software with minor problems uncovered during the
Flight Test process

Minor Integration Problems := Data: Software with minor problems uncovered during
the Ground Integration Test process

Operational Tape = Data: current weapon system Software and supporting Manuals
Personnel = Object: people employed by the SSA

Prioritize Board = Process: rank ordering of changes to be made to the Sofrware and
preparation of an ECP for those changes

Priority = Attribute: describes the urgency of the Change/Problem Reponrt

Problem Reponts := Data: description of problems or errors in the current Product
Baseline that must be corrected through additions, deletions, or modifications

Procedures := Object: all previous documented test actions dating from development
to the current block change cycle

Produces := Relationship: "the SSA produces the Block Change"

Product Baseline := Object: documentation that describes the configuration of
Software, Manuals, and Tests that exist at the start of a block change cycle

Reliability := Attribute: describes the required reliability of the baseline Sofnvare

Reproduce Tape = Process: copy sufficient quantities of Block Change materials to
accomplish the Field Change process

Requirements := Object: documented User needs that the Sofrware must contain
Resides in := Relationship: "the Block Change resides in the Target Computer”
Resources := Attribute: describes the SSA Equipment, SSA Personnel, Flight Test

Equipment, and Ground Test Equipment needed to accomplish the work described in
the ECP

D.7

Results = Object: documentation describing the outcome of all previous Procedures
Revised Tapes .= Object: new Product Baseline Software
Revised Manuals .= Object. new Product Baseline Manuals

Rework := Process: activity that corrects problems found during Ground Integration
Test and/or Flight Test

Schedule = Attribute: describes the expected completion dates of major ECP
activities

Size := Attribute: describes the number of lines of code Product Baseline Software
contains

Size Estimate := Attribute: describes the estimated number lines of code that must be
added, deleted, or modified to satisfy the Change/Problem Report

Skill = Attribute: describes the relative abilities of the SSA Personnel working on
the block change

Software = Object: Requirements, Design Docs, and Code
Speed = Attribute: describes the throughput of the Target Computer

SSA = Object: Software Support Agency, the organization responsible for Sofrware
support

Standards = Object: documentation that describes the SSA4's local Software
development policies

Starts From = Relationship: "the Block Change starts from the Product Baseline”
Submits ;= Relationship: “"the User submits a Change/Problem Report"
Target Computer := Object: the computer that resides on the weapon system

Tests := Object: all previous Procedures, Test Code, and Results dating from
development to the current block change cycle

Test A ssets := Attribute: describes what equipment will be required to support the

Develop Changes, Ground Integration Test, and Flight Test processes for a particular
Change/Problem Repont

D8

Pl

Test Code := Object: the current configuration of Software created to support the
Develop Changes and Ground Integration Test processes

Test Plan = Object: documentation that describes how, why, where, and when the
Software will be tested

Test Tape := Data: Software containing the changes described in the ECP that has
completed unit testing

Test Schedule := Attribute: describes when all portions of the Test Plan are
scheduled to begin and end

Updated Tapes &Manuals := Data: sufficient quantities of all Block Change materials
necessary for distribution to all weapon system bases of operation

User := Object: weapon system operators and maintainers located at the weapon
system site

W aiver Board := Process: formal organization that reviews minor Software problems
discovered during testing responsible for returning the Software for Rework or
passing it through to the next process and generating a Problem Repont to be acted
on during the next block change cycle

D.9

Software Support Object Diagram

—Approves cce
gce Ve SSA
Cost —Produces ——f g o
Schedhde (SCED)
Resources - [_A_‘ /\
[1
{ Field MX [Fliers] Personned | |Equipment
Personnel Experience Availability
Submits ‘WE“ LEXT TURN
Skit
Change/Problem ACAP. PCAP
Size Estimate Fieided to MODP
Test Assets 7\
Description
. TaowComoter | | L
Priority Speed, IME Resides in Development | | Standerds |
Memory, STOR Paradigm
VIRT
Block Change
Note: Italicized words are I—— Demonstrates
COCOMO attributes and o TesiPan
are inchuded in the For FA-——\ - Test Schedule
COCOMO databese.
Revised Revised
Procuct Baselne Taows ?
1 |
Ground Test Flight Test
/\ Pan Pan
|] /\
Size, KDS! Ground Test Flight Test
Reliabiity, RELY A] Procedures | Procedures
Oata size, DATA
Complexity, CPLX Ground Test Flight Test
Tests Equioment Equipment
Q L {GT Speed. TIME | FT Schedule
A | FiedMx | GT Memory, STOR
GT VIRT
e
Ground Test Rosuls Fight Test
Design Docs] | Resuls

Figure D.1 - Object Model

D.10

.,

Software Support Data Flow Diagram

Y, K Boerd Wahered |
Current Baseine _/ —

Updsted Tape S \

& Manuais

Problem Reports
.//*\ X
Fiokd A
Change

Operational Tape

Figure D.2 - Functional Model For Single Block Change Cycle

D.11

Series Software Support Data Flow Diagram

Change Request Operational
& - Ta
Problem Report USER 7pe
A \ ;
Need Date > 4 Need Date
/ Change Request ’

/" Block /
q/ Change Problem Report Change
\ Process / ———_—)\ Process
\\\ N S /4\\. N+1 ya
\\/\ Software Tests S~
Curreﬁt Baseline &
‘Manuals
Product
Baseline

Operational Tape &
/ ~ ‘
P Problem Report \)/L
Block

\
i
/

/

Figure D.3 - Functional Model For Block Change Cycle Series

D.12

Py

Sacramento ALC Block Change Process

e T

N,
N,

PROCESS2 \

" PROCESS3

/ ANALYZE / e
SYSTEM | ANAL
PROCESS 1 Rea. \ sot::}me)
EVALUATE P \ .
CHANGES e - \ o
S / PROCESS4
/ .
POST [oean
DEPLOYMENT _\ SOFTWARE |
" PROCESS 8 SOFTWARE N -
L SRoouce SUPPORT I
\ CATION
\ " packace PROCESS)
\\ y «
__//k/"\ T . /' PROCESS 5)
h e : | MODIFY !
PROCESS 7 PROCESS 6 | ,, SOURCECODE
INTEGRATION wrecrate M N ,
TESTING SOFTWARE / ~—

Figure D.4 - Sacramento ALC Block Change Process

D.13

MIL-HDBK-347 Block Change Process

Level 1
p /—\
ProblenvChange PDSS Delvary
- & ol
Level 2

/_\\
" System CscCi
integrate Operational
——»&/m sm.) T-th Q"/' v.sm]
Produc(\
Level 3 Initial Analysis Pnduo.
/ TN

Problem/Change /MV'*)
Report Analysis |

4 —"
7 A

- Xi‘ . ; y / N . , .
/" Status {dentified Rev lm /,/ " Tech Impact A@rﬁs. X .
c'“"' Analysis , Estimate, —» CCB)

Account Report hange | tasking .\ Aness &ECP \

- Approved
Problem/Change
\ Ro!pon
CSCl Index
e Change Status \/L)
Report Status h
Problem/Change—\ << /
< Report S~
Level 3 Develop Software
AN Updated TN P sggd::m
Anlayze Alocated [Prelim Updated
A\ Reqts Config & Design SOD .
Approved " Updated Code &
Problem/Change Updated STP\\ csu
R r Test
: eport STP Updat
STD
cscl Test Report New
Test Version csci Devel
/ Test Confi
Updated
li CSU SDFs

Figure D.5a - MIL-HDBK-347 Block Change Process

D.14

MIL-HDBK-347 Process

Level 3 System Integrate & Test

Test / Clearancs
Ro:m ces zomj

cscCl | internim Test
Test Version ntegrate Version
y

o

T
System Test Results :
' Flnght ' Version ™, PCA
- r &
Test)\ e i
Approved - . FCA
CSCI Version PR
T st /“é . L
Result / Audit Results ——
\j cC8 P
/-‘_\Fo"'-l ”,/ N
Operational S SCNT———_| g:,;' \,
Version \
Level 3 Product Logistics
Operationa Buid Detivery Verfy \ Verifie - Bulkd
Version Deiivery Model model models \ >< :elv::vy |
modol / ac ”
" Produce)/ i
(Mamah ; Delivery
Schedul \

Y

R Train & :
~q¢—Delivery Pacw‘—@ ><\Pubbcaoons Schedule, & * Coord
Delvery Packages oof \
g v \—k DoMry

Figure D.5b - MIL-HDBK-347 Block Change Process

D.15

Appendix E

Memory and Throughput Relationship Derivation

E.1

This derivation was performed on MathCad, version 4.0

Start with the SYSCON equations from SYSCON Report (pg 41) or Table 2.3.
Note these equations can be calibrated separately from the coefficient and exponent if given the
proper historical data. Find:

% Timing Fill resuit of averaging Design & Development Coefficients and Exponents

Coeff ='—'82;-—L'8—2 Coeff = 1.82 Exp =L°;"—3' Exp= 1.305
: - Exp _ . S |
TimeEffec X) = Coeff-X N =20 i =0.N Util "ﬁ
2 T T T T T T T T T
175 [~ /.:
7
TimeEffect (Ual) %3 -
_ . -
y- 0715 -
[+ 3] e
02s b
o] 1
[} 0.1 0.2 03 04 [] 0.6 07 08 09 1

% Memory Fill, resuit of averaging Design & Development Coefficients and Exponents
.2.00+1.88 _1.50+ 135

Coeff Coeff =1.94 Exp Exp=1.425
MemEffect(X) =CoefFX™® N =20 i=0.N Uil =t—:
2 T | T T T T T T T
175 I~ /,” -
sk //»" -
MemEfect (Ui, 1251~ m
1. 0.75 I~ — -
0S5~ -
025 -~ -1
o 1 1 L 1 1 1 1
0 0.1 0.2 03 04 0s 0.6 07 [+X] 0.9 1

Unl.
]
.

Maximum total contribution is

TimeEffec(1) =1.82 MemEffeci(1) = 1.94 TimeEffecy 1)-MemEffect(1) = 3.531
TimeEffec(.95) =1.702 MemEffect(.95) =1.803 TimeEffecy .95)-MemEfYect(.95) = 3.069

E.2

Learning Effect Table 2.5, is the result of averaging the Design & Development Coefficients and
Exponents from the SYSCON relationship

¢ _1.64+ 1.65

Coeff _--375+- 374

Coeff = 1.645 Exp Exp=-0.375

Exp
. LeamEffect(X) =S%MX " N6 i=I.N Year =i
Coeff !

1 T T T T
0925 = N =
08s—
LeamEffecy Yca:l

- 0.7
1

) 0.775 [~

0.625 I~
.55

04751~ -

04

E3

Appendix F

Database Contents

0z o068 ¢ Jes22 01050 € [S60€ 2 [¥ZeS 8€ [0000 | [916€1 [S1680 9100 1 [£188 0 Je9z1 I [28160 Jevez t Joswi 1 [109Z | [15c8'0 [s9€0 1 [0000 | Jozee vt [0000 t 1peZ 19]6208°0 [evsot Jsest t [AvD[st
&0 TO 16128 S [LCIT L [61099 5486 2810 990000 1 [(6€6Z [(7260 F9300 [op (L0 [9502'1 05200 268G 0 52160 0BT L L [6€Zv L [2890 1 100001 [pIST86 2462 | 129159655960 Jr@SL 1 [ISLLt [AVO]L
1T {P06€ 078000 |15¥P 009 00Lcv ¥ (00001 [95S9 015680 £ETT | [C0R4 0 [YB¥0 | [E6ZC | [vB69 920000 | [FSLOWE [1526 0 [Evv0 { 15500 1 [AVD[ZI

2020 L [19ZL 1 JZLLUL {0000t (8481 0F [0000 L [90ZC PR [L6€0 L IBZEL'L (SO0 1 [AVIIS
oo:o_mza— 0£50'1 {64Z9'L [Z81p'@8 {0000 t [800V 66 [PPZ60 [65V6 0 [1996 0 [AVD[9L
"L [Z890 L jovOL L J08LZL _30—‘_«33 oLl | [PeSL 86 [rive 0 [SVOT L [BZET L [AVOIPL

P808 0 J20Z1 L [£0290 J24L8L [SSILL6]198C1 [L0O1 —o~o|o_o_ 698 C JOSIB0 [AVI(LL
0 [£990°1 [€900't J0ZC8 0 {0000 L {S861 ST {0000 L [880L S [€6160 [PUSO L {91640 [AVD, LI
0 [ZS160 [0t 11 [Pe2Z 1 [OBLY'L {SYST'08 0000 | [PE08'09 [W060 LT L [82860 [AVD'TZ
) ’ ££91°1 [600£0£[0000 | [iC£1TS [8916C [S££60 [F9260 | AVN;S

: 020— ooo_oo [0000'L [Z69F ¢¥[0£09°0 JOOV6 0 JZ88L 0 { AWN|L
OLPL L |OVPZ'0L [LZPO0 [TLOL L [1S060 AYNIL

L9908 [0ZS1 S [L1Lt ¢ [6/59 S 0115 € [92Z9 65 10000 ¢ [9E0E T [ST08 O

LSe [2AC9T [0LLS0[CLLT IPTL L [912292 {0000 1 [OTIT T (91681 1
919 0L [r6LT S [1502 { [9£00 9 [609S € [OT6L 09 [0000'L {PL999{65590
909 8¢ JOLOL 9S40 L [OCIP S {1129 S [CROB €6 {0000t [Z8ER 0 [PR60

LT L€ L [L1Z1S0 €981 [¢OpS0 [PLSOSL (0000t [98050fLeET L
0991 [eczoojoiviofZstLo Ry O[eBtLt L [0000'L [SLLOT[2C00'L
LLUSTL [TLIC8[STOR L [LLEP 8[L989°S [S6L6 V6 (0000 L [ZZ18T 28640
1100 [Sve00[01Z00[€L010 015201 _[0000 1 {6514 06628°0

'€ [6crL 9 [9590'L [COSC 6 |9555'S [rol6 26 |0000 L (62690 (YEPLO
L0041 [9206°T [P199°0 [990€°C [£646 1 0640 £€ [0000 | [600S | [9TS90
16561 T]L180 2 {0494'] [82£S6Z|0000 L [SPO8°L SSLIL

e

0000 L [S566 9C [6689°0 [OPOS 0 [L£980 [AYN|Z
ZovL'L JOOTL'0L |L£090

0 [6£4065 1 [S0LZ48
LU0 JLLTS £ |[9R0L L [PEOS 9] LIRS V2195900001 [£C8L W [9120'L {£1£60 [£0£2'\ [6vZ90 [S990'| [89960 [TiPO'L [£650'L _ o6Zv8'L [C19v 96 10000°| [Secatr [LLolt
1ZS49C {L18C P 0 10046 {1960 |£109'a0 [0000't |080S 1 {6620 0 [£££60 [¥886'0 [STO0'L [£22810 [EVeL'l 1660 L (09260 [00L0 | [epZZ't [ove60 (0000 1 12599 v5 100001 [1ver o€ [¥90L L
6%l [C6003[9918 L[0T 9[Eva6 € [2£€0 9900001 [r98e 060101 [£2660 (01060 [60p90 JOZ9L O JOVES O JLEO0'L [£ZP9'0 [20Z 0 [S1060 [14280 [£94€L [22098L 1608 | [92V5 66 [89860
¥ R¥0Z[9ir0 T 00w | [6£29€Z 0000 | [88£9Z [1061°L [ZSOT L [€876 0 [9608°0 {SOZLL [9S6Z'L [8649 0 [SLI0'L [r14Z'1 [B18O'L [P6OLL —mmn—_ugvo 0000'| [SZ9S0C [£9960
L |56650[ZSCUO0L890 000 0[Z864 9 [0000'L {£929089€0 L [€1€£0 [£6060 [£8290 [SOP0°L [2£980 J09SL'L [0C60'L JoSPO | [oS19°0 [1689°0 [0000'L [6v18'7C 10000 | [10SL TP [S£L0'1
L6066 [0 [aE160 i LT |ZeLo sV [0000'L 7266 0]$9T6 0 109560 [1289°0 [COS0t [@8EC0 [£122°1 [SLOL'L [rTi60 [62880 [2200'L [9604'0 [0000 | [ZLPL6€ [9400°L [POZO'S 02600 [ISLLL [LSLO'L [AVNIQ
1L ¢9! |£954 S [900C L 9 veco € Jreoc so {0000 1 {oSiv § 145601 [STZC L [L220'L [SISLT [68£0°L [C2ETL [COZO'L [oSPO'L [9RSL L (9022 L [1268°0 [0000 L [98vL SY [POOC'L [2Z0008 [SPSO L 12ZE0'L [£590't [AVNIOZ
ST [L181 ¢ [9SZL0]OR19€ [00L1 2 [£651 OC [0000 1 Jov0S L 1100 | {PS260 [SZ0C | [IS6Z L [PoCe’0 {22060 [ZOPO'L [£0490 [1 1660 [P90CL [0STO'L [SOSC'L [019£ 0L [0000 L [1T90PP [0LZ0'L [¥ZZ0°L [ISVOO [AVNIO
TLL UL P11 201870 [WIOV'Z [OSYP L [$866 €2 [0000'L jrov0 1 [£1€07L [€20 1 [1119°0 [S260]18va0 [LPET 1 Jrevi L [voe0 L [Vepe0 JOLELL [IBEO'L [8951°L [CTLS 4R |184Y | [£65Z°S8 [VEPS0 [8000'L [WL60 | AVNIZ

0 [AWN]L
‘U{AWNIZ
AVN[BL

Camposite Database
Part A

t 9 1gC[Lees0 7 JO16C Z 00606 &€ [0000'L {11SP P IS1OZ1 [4LpO'L 2E61°L [Pive'0 [9662 L [S980°L [09CR'0 [SPSTL LIL1'L jovBT L _noco._ ZL06'L g—o.co 0000 1 JeseCor [£SC1'L [OLIRO [IC180 |AVYNIBL
9L 1176262067 | [6T00'6 [260v S [9482 060000 {22991 [Z0LZ 1 je2e0't [Live0 [8886°0 [20180 [£19970 [6£6% L [SIFT'L [£608°0 [PS96 0 [9084°0 [609v'L [10S6 18 1SBS 1 [£15068 [€9860 [PZEB 0 [66C6 0 | AVNIQ

66l J865CT 0 LT99°T |9009 { [TEVY 9L {0000 { oﬂnn_waad 1S7E L J64460 [€9160 [9801°L [SR10'L [20LL"Y {8ZLOL [IS02'L [€LL60 [PS6L 0 [LITS L [ZTROC PR [CLEY L [EVBLTE [906L0 [Z090'L [CBLB O JAVYN|LL
LSl ¥ [SOTYe 61 900V 6 02185 7265 96 [0000 L [rSpo'1 {9Z99°0 J12Z260 [080't 1589'0 [SR0A0 [S0860 [ve90 [oPiL’L [O190') JOCOR0 JIZrOL [ZELE | |00 9L [9L02'L [86Z0CL [££680 [8£90L [SS0Et | AYNI]L nlu
O [C8LL8]L18c8 L JouvZ 6 [LOZSGlIvVER 1O g— 60Z6 | [6566°0 {12660 [L100L 169401 (60660 [£0060 {Y06L0 {9591 L [EELZ L [ro6Z L 166121 (00001 _.n!wo_.nn 0000t [FESt LE10PPO'L [28L060 J8ZBOL [AWN'LL Fxy
(020 {L0P0°0 |0L00°0 |wS00 j ' 75090 [Zve0 L |T6\00 J620L 1 (0246 L [FOLZ0 |#9VL 0 |oVEe | [ceve 0 [0S00'L |82Z0 | [8900 1 |0O0O L [C¥ZS 20 [0000 | |98CH0E [00¥6 0 [8019 0 (2261 L | AVNIE
82 |91S8 ¥ [L101 L [€S19'S) 1 [PPaZ | [££060 [1210'1 JOZ6E | [£200 | |ORSE | [0960 |£200°L [9290 L [0SZO01 14956 0 |0000'L [S508 ¥ [0961 | [989¥ T/ 999870 [160ZL [(0890 | QID[SL

LSL Y L 1 |oveve T [2560 | [28660 [9988°0 [9200°L [9991 & [Z8Z1 ([CBEL0 |Z89Z | [0£160 [TeCE | {9ES0 L [C9ST'L [S8YS 60 [0000 L JObZO'LY [(p860 [PL160 [IERL | QIDfZL
T18 [OvoC S [SIZZ 1 [0Z0L 9| 16P9'¢ [PR 2609 [0000 t [PZZLC [I8F0 L [o9¥0'L [OZP6 0 [VLE60 [SI0LL |6BZ1 L [£S80 1 [PSBLO [Zowl & |20601 {¢S1Z1 [eviy { [CCE1°08]0000°1 Jtseaps [c6nL 1 Jol01'L [ssL0't OU_N
LR (Y 1 [010S 9 JIPIS € J00Z8 ¥5 [0000 | [£910'C [ELve | [EvL0 1 J0S660 [ortot [61 260 [OROT L [S6T60 [84p2 L [OTSI 1 [6826°0 (00880 LECT L [CEBLTL [OL9V'L [BOCS VB [6P6L 0 [CBZB 0 [8E980 | QDS
12 [0t T[v66 L [Po187 7599 62 [0000 | [#080 L —Sno 1L9% | [5268 0 {84040 jZZv6'0 [0598°0 {60060 J2£0C 1 f2¥01 L [9860 L JS9LE1 JOO0O't [6596°LG {0000 [SBCS G [£S£0°L [OVEL'L [Z186'0] AD[E

16T 11 '€ {69060 (09597 [081£Z 9187 SP [0000'L [60LF0EEST L [9542 L [9we0'L JOLIC'L [9690°0 |8RTT L ORZ'L {Lvv0 [69€£0 [15590 [15£8°0 11650 L [¥Z6C'S9 00001 (Y0905 vonoo STOL'L J1T490 | TIO|L
8SL T [T9LS0]{L0C1 099590 [TT66 0 OZSS9 (0000t [Love -jsc 1610t [££160 [25¢90 [Z8LL'L [o10€'L [9SV90 [peeZt (6ZCO L [9OVE L €00 1 {0000'L [SLLOCE [RI91 j8EPL'LO vonoo u«—«— vl
IS9Z |68S1 L [CPOT 0 |001E | Jo96L 0 [CZZ 1 [0000't [VSZv L [66Z0°T [Z641 1 |1658°0 [w80 | [SP650 [$8960 [96£60 [6£10't [POOZ L [ISOL'L [ZRLL'L 0000t [66C0°8S [T IV L [CO6X T8 ({5303
19€ [2Z9CS|ECZZ t [£901 9£0S9 € [rvrse 00 (00001 [C52Z 0187990 [190Z'L [80£60 [9E1S0 J8Lvi’t [€00L'L [§98L'0 [090'L {91660 [09¥0'L [6££0'1 JOOOO'L 11208 € [1860°L 19968°L9 qiojstL
LU LU |EZ95 ¢ 90000 [SSvo ¥ [Z2ev T [0l v [00001 {5569 L [COE6 0 (P8 0 [Lo€ 1L [SCA60 126960 [0S0 'L [ESLL L [2626°0 [P6BL0 [89£0 | [2Z6Z'{ |6CBE | 00688 [0000 | [FES'ES qiojzL

7L 6 |[POSZ Z[ooSL L [8VOL 9 1S000'S |8766 28 [0000 t (9tvw G 116v0 L [8552°0 [SOVZ'L [6081°1 [£8160 |6£06'0 [61P0 L [€609°0 [PEOL'L [0S88'0 [PEYE'0 [0000 L {£EC1 1S0000 1 (816 1Y 119670 JOOLL'L 8060 [QDL
TOL |C150€ [6600 0 [SZov'S [OvR0 Z [SYZ vt [0000'§ JEeps & JZISL L [92SL L [c82Z L [STST'L [$608°0 Jezst 1 [6100L [SvS0'1L [9550'L [S6/6'0 [8981°1 [0000'L [£909 €€ 9690'L [86££'G9 165660 [1501°L [01¥80 | AO[Z
U ILO'S [19SL L [600L'G jeOSV'E 25 [0000'1 [190Z T [11560 [vZ1 t [2510°L [061€°1 [0S960 jproo’t [TC10°L [110Z L {9220t [£6160 [LOOL'L [0000'L [POZL &€ [POZS'L [1521°¢8 [000Z'1 [22080 [9080 L | QID[¢
1IPS [S005Z][260506ore T ST1L | [8vy 82 0000t [2SLL0 [9v0L0 (16560 [9£960 [PLC2 L [0616'0 [60VL0 [ZC89°0 [80PL 0 (69060 "1 |0000°1 {OVSE'SS [0ZLL1 (OVL6 L6 189060 (96560 [8£0'L | QID[6
(S 0S99 SoCeZ { 9lotest [eoro 9 jo000 L JzZer e lol 101 26001 [ttt L [o8sT L [aZ11°L [6££0°L [I9P60 [8£590 02000 'L [poov L [Evos 6L 1882S L Q160 (8110421 {SOPR0 [Z1Z0L | QIO
1sZ8 9 [6195L [S949'L [600L ¥ [8820 94 [0000 | [V969Z [064L0 oo—a_ Rmoo 66101 [C000'0 j28£0°L [62640 [PE0E'L 5820 L ‘L [£CES1 {09698 P82 1 195940811 [BLpLL [ISOZL | QIO
1 [£Z95°T [808S0 [S606°T {909 L [PZO1 62 [0000'1 [0ZOL L [8296°0 '0 JrZ901 |T020°L [PiC0'L [P0V L [EML O 'L Joo0O't [riSSZe Iyl 898428 (66001 (14290 [SLL90 | AID
OL'TY 1SLC0'9 [2898 L QZCLL Y [2609 89 0000 | [890SZ JTHT | ‘Ljecnt _cncn.o LL 0 [£6860 (L6600 “Ljoriri [£90 08 j2eY'| 298P S8 [¥Z00'L [TEL80 [pLROL | QIO
1SZ Ol {909V 8 [TCLo L 09196 (6491 S[CC26 560000 t [986€0 [Zor6 0 [Lir0L [S0C80 [90£01 [18S1°1 11600°L JZOZ'L [E610TL JLve80

Zl
[3
€1
oL
€1
£899°1 [c0Z6 98 {eoer | [onsl 98 [C590' 1 jpoL0'L [$2860 | QD € |
o
Zz
c
4

0000'L {811€+9100001 189009 119Z0°L {8L€60 *PIMO [s[=]
[N 0 1095050910 0]0100'S JO000'1 | 11691 [90£60 [91p60 [P6R0 L [6BCL0 [C0VE0 1258970 |10 L [BIUL {19211
L 5 < x5 T 5 % E 9 2
W mmmmwmmmmmamam wwmwmmnm

Part B

Camposite Database

WL O [SVoV L 19926 04529 L [S186 0 [ZLES 91 0000 ¢ [péer 0 [92£0 | [9€P6 0 [188£0 12606 0 [9600 0 [OVE6 0 09500 [£250 | J0000 | [€668 O EIZ | [OZVY | [66CZ L8 GLPL | |LZV6 &R [S9EL0 [609£0 [16680 | 34O[1

FCUIOLL0 ¥ [6901 L [SLvS § (6228 € [C9L¥ 56 JO000 | {8521 & (0826 0 |VEE6Q 12yl 0 (876 0 (9480 1 126460 [69€6 0 [v£40 1 §1200 | {8096 0 [8€260 {6589 L 817982400 | (986606 V280 1 [stBL | }11S0L &Oﬂ‘
5t

259011 [CLLO T | 1099 0 [FORC ¥ [9009 £ {0966 T¥ [0000 1 {92¢ 2 L0608 0 [Z298 0 |S268 0 (9161 1 [90690 [¥Z60 [6152 | [2066 0 {¥066 0 [SL0Z | [26P00 PIE6 | [W06 66]04€9 1 [0£2Z 26 [1L960 [8SPR 0 [V680 | | 44O
762 |Z90LC [LLP O [9406 Z [610W | [0296 €2 (0000 L J5926 ¥ (9200 | (118870 [1bZZ 1 jpwst L [I1v0T'L [€OOZL [19£60 [8258 0 {04OL | [E9LZ 1 80820 {4604 1 [IZ15 160000 | [@98C o [£900'L {0evi L [¥Zpl | H4O[ZL
7000 (19 Z|T920L 1 [02990 [ZoR1 & |129sY 98 |0000 | [04vv 0185C9 0 [£268 0 [9984 0 [CPEZ L [SPoR0 [PZ8O0'L [VESB'0 [PEBOO JZZVO L |£1680 9186 0 {0000 U [£111°05 [0000 1 [5556 29142960 jL191°L [ZPLOL | 35081

16 O(ve 10500 019CS | 0516 0[015% S1 {0000 1 {16891 (9010 L (0481 | [99v80 [PZZL L [0CSL T IS62C 1 04660 [68V0 | 165490 [0ZOL'L [18160 J96ET | oL L [060T 1 [PO21 €L {09980 [£P06 0 204011 | $4O]6L

12008 |09VS ¢ [0909 0 [vOYO ¥ |01 L7 T [S60Y OF J0000 | (26191 1260970 [£298°0 [PI960 |ZP19'0 [WWE0 1 |BOZ | [90S0 L [PPLLL [P0 | [EV00 | 050Z | 12252\ [TSLLTL ST U |STTR PL JTEGO'L 56100 {8960 | 440)¥1
L 102 [OVS9 £ [S6CL L [S02L @061 $110€6 99 0000 | g._va—voo YOLUL[Sov1 | |Z121 1 |89180 [9£S1 L [1Z18C [£560 [OOEO { {9510 1 [1096 0 0000 1 [9Z&L9S [e¥9L L (149 L6 |POLLL ‘«n—oo_ﬁoo.o 3501]¢
SSvPL 0

SOC | [0ZZ1 1 |6708 0 |E601 | [CBL1 (|S051 1 [BLE0 L [80Z1 1 [C40H0 [62P0 L [0000 | |260E O [CE£4 1 [PO20 86 190L1'L [PL660 9101 1 | 4011

{28 [QLZZT[C0S O [(ICS TIPS (9192 ST {0000 | [659L €

¥[S0 (| [PEZP 0481 L C [S04Z L [Z90T 1Z 0000 | [9489 | |Peot L [€pZO 1 _Ncoo_ 71280 [C0160 [Z00T | [0S0 | [PECL 0 |2052 0 [90v0 L [S€88 0 J000C { [601695 [0000 1 10656 £9 [OVE80 Jgsvi | [08ZE'L | 4405

Te00 061 J0SLT L |SC1Z 1 {9065 8152816 |LZP8 S8 |0000 | [SOvZ | [COLZ 0 (661271 [16VB0 [€9460 [ZEPZ | [6820'L [CBYL'L {00690 |£600 | [8118°0 (€61 | [118S 1 [£22998]0000'1 [¥6SZ 05 [€L0L'L [66£6 0 [€2960 | 44017

665 {9 |2LrTZ[001S 0 LSS T [00CS | [219S ST L6 0 7560 [990C L V0190 [9998°0 [526L L [C0lp { [1Pe0 { [SLLLL [0000 L [ZEC DS [VRLZ L [SOEY €L [Z8VE 'L [Z980 L [£9060 | 440]it

00 L¥C 9201 8 [6059'1 JOLOZ 6 JPOES S [CL1L 26 T[e6201 [Z2600 [c910t [5v00 [Zve0 | [0001 § [5£01 L [26C0 L [0ZI0 & [OL1EL 0 [SL98 L |8PPL £6]84BT L {6L1L 9L 699X L |ces0't jeeseo | 44O(11

(1Z6VY |[RI8Z[Lovo0 [owT € [rose | [69cv 28 U[IZUL [0Z60 | (999610 [T6C6 6 [Z¥EL0 (€20 | |PYBR'0 [Z89L | [¢685 0 [9ZSL 1 10000 | 10TV Cv {0000 | [£opO'STLove0 [¢oti't {£100'L { 5O(L1L
792 |(STP T [82920]1768 € [vZee T | (V60 B¢ [0000 L (2609 011500 | [OECH 0 60401 [€O9L O [SPes 0 |1££8°0 [9T80 L [PCO8 O €906 0 [PZ160 8908 0 (05| [FPLL €8 0000 L _«soooo LTS [90ZL 'L JaLE60 | 440(EL

1201201 [Zo0L 810946 | [CO166(0606C TS 1S 660000 | [82vZ 1 |92£60 [¢901'1 [0018°0 j81LLL w101 [0460'L (10960 (64590 [£800 { [SC06 0 [COPO | (0000 | [EROCE |LLLv' | 6P S8 [EB660 [1256 0 [LL62 L | 44002
T [e080 Y [PS26 0 [c6Z9 P [0264 T [S66C 9¥ [0000 | |80EY 0 [€£89 O [60LL | _oono.o 16180 [6£060 [SOC1 1 [01£8°0 |£5€1 L [€SC60 5665 0 |2008 0 [S120 1 [11€6$9[0000°1 [SZo50v [Z090 | [90260 [LPIZ | | 43016
Zov 0 [0ZS20 15041 0|CES8O0[(SIS0(1815@ (00001 [SI1S10[82990 [CS960 |9ev6 0 |£0Z50 (16680 [6ZIZ'L Jorsy 0 [ZPSL L [6GvR 0 [9428°0 €9£0'1 |0000 1 [Z596 1S [RULL L [Ep96 L6088 0 06180 [0628'0 | 43O]01
S B0L1LZ2T S | 168 L [0ST6 S [965S € [C9SZ 65 [0000 | |9895 | PS80 L |SSE0'1 [£1560 [60L0'L [6r£40 [B156°0 [#060 [6S860 [ELE'L [040660 12060 [6VTP | [SBTS 08 (660 | [2668 S [6960 [1P8610 [S610(| 44012
1996 111 [2256 S [ZLV0 | [CBPL O1C6C0 ¥ [PZ0S L9 [0000°L [ovZT L [IPZ0 | [VpZ1 1 [8S9Z'L [20£6 0 |SLE0'L [99p60 |tr26'0 IvSLl | [0086 0 b5 0 [1000 1 [C80% | |SvreSZ [0000 L 2959 ¥E (89680 [PEOZ | [S1€£0] 44O b1
T 1c WSLLV |TPa 0 (ZISL Y |Lves T [veuw (v [0000 | (0508 06951 L [Z9C0 | (VTve 0 [S08W 0 [1£S0't 18240 [ZOC0'L {vweaL OTv0 | [£2L60 QT UL J000O L 14086 v (0000t {4212 1C {9490 [(ZvL0 [vB660 | SO3|L

0L 0 |SPZL 01220061250 6v0L 8 0000 | [6080 L [C608 0 [FoLL 1 |C0Z80 |90 | [9619°0 [Evie0 [02Z1'1 [Mes0 [0F060 [628£°0 [£L51'L [8088'L 1878 £6 [o5SP | JOSOT ¥8 [Pe00 L [evee0 |STE0'L | SO3|6L

14
7820 |00CS 0 |POZL G [PE09 0 P19% 025009 [0000 [PEP90[90£9°0 [6LC1 1 [CSPL 0 [R 140 [8C160 [9948°0 [FOBO0 |6508°0 [ZP6L 0 [pTol L 19260 [09TL | [810Z 26 |E9T1 | J262Z 69 €990t [POZ0'L 144480 | $O3[8L

TZZv Yy |5008 £ [659L | [Lo6 8 [VPor G [STES 68 [0000 | 0566 0 [(PSt L [08E60 [££1171 [tP10'L [£5960 Z611°L {50860 [€68L0 P80 0 [9220°1 |P1Z8°0 [0000 | [20v9'8S 0000 1 [O9EZ £F [9908°0 [£190'1 [£Z160 | $I3jLL
Z0C 07 [9009 W [9180 1 [F9OP 9 |S6LZ © |IWrd 7S [0000 t |862S | [£SS60 [0S660 [8600°L 12660 & [2£060 |19 (28580 [POVR0 29620 [£65C L [€SSZ L [0000 | [65090v [P68S L JOLFL06]1£01L [iE¥80 €r10L | SO3JTL

SoU 0L [6ICLS]Zovu 1 |LI9T6|Z0E T |121V 2H 0000 | |Z668 09520 1 [08101 26180 |8/Z0 [SBLO'L [ZWO'L jovi60 [XE90 [SSTT 1 |11£0 1 [&926°0 JOO00 | |SYBE 9S [0000 | |SPISST {0560 TSI ES)

T
51 J9RAC € |1994°0 JCI50°S [Z0ZC T [VOT9 8¢ [0000'1 {91680 (2860 [PS£90 [all'L [1SZ1L 18290'L |6£660 [S61Z1 [S0S60 600 | [90VZ | |Z994°0 J0000 | [0Z01v9 [606C L [L@ [£10L'L [€2£0'L [LOL190 | SO3|¥
S

@ 12911 C |okop 0 |SZOP Z [S00P 1 [999Z PZ [0000 L JOVPL 0 [1Z€1 1 [0816°1 [££4560 [ivL60 JZ800' L CIP80 J6Z00 | [£9060 JoS11°1 JS120°L [¢5££0 [S060L [0V 99 J000O | 8S¥S'ZS 09090 [€£Z0'L [21480 | SOI

F.3

Bl |05ZV C [P 0 |6E0L T 2OV | [9955 € |0000 L [8268 0 |62V 1 L [8SS60 [PL06'0 [9060' JOLVP'Q | L0460 [1622 1 _::.o 16660 [2Lr0 L [C9B60 [£66€ L 281 1°¢£ [0000 | 0076 8Y LELL°L JoreSLL [9600'L | SO3

Y18 (9049 | [L0950 12668 1 [64C1 1 [BF10°61 [0000 t [6620 L [6864 0 [SECH'0 [O1LE L [Z5CL0 [5600'L [SSLL'L [£9160 60990 [PZO0 | [PORL 0 |6958 L |£PEP | |8(88°Z8 (0000 L [ZSLZCR[66SL'L [90£60 [9L01°L

909 [OP¥ | [COCT 0 [OLVO L [1P660 [VPir 91 [0000 L [cPL0°C [16060 [9610°1 [000L ' [040C'L |orZ0'L JL6R0'L [Z1ER0 ZELUL [VZO'L [90160 [S9180 [60%v | [£95S 18 [059PL {4918 |1 1700 [69560 [PLOT L
o6 [0CZ0C [16ST0]909T € 9056 § |Z185 26 10000 L |45V | [29260 [QILLT {£059'0 [1ZST'L [c2pT't {1zt 1000L'| [@860 0 Zov0 | [PS86°0 |05R6 0 [0000 | |PPZpSp (00001 | 1871 79 [1LL60 [CBBL L [966L0

91 [200Z v V2S00 [OCOZ ¥ [9698 2 [L899 £V J0000 | [908C 1 |962L | 68960 [S1L60 [86C8'0 |69C£0 [S12€1 {£800'L 66660 [S680°1 |9950'L [2091 1 [0000 | |£699°TS [LCTL L |2601°69 [9681'1 169080 (6060

[=2]

=l

O3

V081 |CVZZ L (0100 [99ES T [8915 | |8S6L 6Z [0000 | [ovrt v 19861 L [(9860 [6490°L [18060 [SPL60 [99£6°0 [9¥80'| ZLT60 [12060 |L111 1 JOUeL L [06SE | |CCe0 962295 | [02L1'68]1020'([169610 [SISL'L | SO
$O3

O3

3

05 OB 12009 0 1¥Ze6 L 9596 |66 G (92V6 86 10000 L {86LZ 1120180 [E1£0°L [96240 [S94L 1 [€6860 (S590'L {9080 'L POPO'L [Z1v60 (09480 (1482 | {6599 | [c€98'68 [0000'L [2100 05 [60260 [1190 1 {88490

LOTYL ST O[TV L L ¥ 1955¢ 22 |0000' | [1P6R L [£8060 (69060 9041 | [C9960 12602 | [€000'L [BPLL°L [£808°0 [ST9R'0 [9981'1 [6/860 JOSIY L 9¢£1°08]0000 L [€S09°6C [6£10°L JoEL0'L [ZIVOL

1808 [vP90 yowt0jLCCL0 D [89%E £ 0000t [6LLE | [oVD60 [6460°0 [LELO | |oPB60 (OVO60 [95Z0'L [2£1S°T {10060 [6919°0 jO6EO L [08EZ L [0000'L 9090'S [0000 | [966€ TV [2666°0 [TL66 L [0Z560
29 109 [99LE £ | 19940 [S668 © [TYOC T |890V 8% [0000 | [0900 7 [1£ST [[68YED [SS56'0 [6£660 [S69E'L (81560 [6COL { TCCL L [090T 1 [2601 | [4ZIT L [ODOO 1 [9ZPD'IS [PZoR | (0BG PE 91860 [Z20L 0 (SO0 |

'S¢ Jiveos 0 [9LESY ZZ 100V 57 [0000 | [C9Z9 L [P L L [6£980 [55460 [S9SC L [opeL0 [OL10'1 [CE00'L (£6160 [2€60 [Ev00't 11660 [0000 L CAEC Ve [£yos | [9290'68 (0081 | [0066°0 [SiL'L
9L (ORS00 044000 s |0000 1 |984v 1 JOV160 J0C90 | {96960 |ZYVL 0 [S6L60 \69ZL L (2100 1 (24880 [p90{ [90Z0'L 18SLL L J0000 L |LBYO'IW JTLEL 108%'06 |90C60 [2C00'1 Jesct L

591 [S¥I6T 20990 1Z916 ¢ [LPBO L |SPS0 Ot [0000 | [C60T § [626£0 [1Z90°L [1106°0 [Z69L L [PS8L 0 [TL290 [£6960 (01920 {0802 1 [99tL L 0982 | [96KC L [SEL1ZZ 50651 [¥Se1106 [888£°0 [PL60L [EEOT L
o 00K ¥ 120060 [0£00°S |Z166C | 196 6 10000 | [986ZZ [(op60 [1S06'0 62080 [PTLLL [89860 [1091°1 |8LOL'L 1080 [L15060 [9Z611 [0091 ¢ [OUSL | [¢61€C5]0000 | [864T 1P |1PEB0 J£12¢'L [S8660

100 JSZve LIOPOR 00029 L [81160 [91Z2 51 J0000 | [OPLZ0[CSTL L [CSC60 [P8960 [P1L80 |6W00'L [Z1980 94980 [WLO0 | (06001 [c951 L [0Ev8 0 [1vZ1 L [€£462°0Z [0000'L [COOP €€ [C989'0 [06660 [£0£6'0
oF [eetsLe104'L [0s0S e 15 11872 S9J0000 | |66Z60]25v8 0 [{L860 [9Z60 1 |Cv080 |S1ZLL [9B9L 1 |ovve 0 |PLS8'0 [£Z1T1 [02610 | IP140 [T608 | 96159610000 1 [SVEE 8P [SOS9°0 JoTeO'L [I€S60

9 JCVOrS |TRE 1 |6CIZ 9 |0SEZ € JOVEE 190000 | [SZ8Z 0 [0528 0 ETAR 0 [€£560 [E00L 0 VE0R0 [SZIU0 [EL01 L 21500 [00Ve 0 169090 |L0VZ 0 16021 {WOE8910000 | [2160V9|SP60'L [EL10'L [B2TL L

Sl [PZ98 S [IESTL 79 |S2Z0V [928Z L9 |0000 | |6005 0 [€282°0 [9850'1 [ec6 0 [068L°0 [ESTH0 [SO0Z60 [P221'1 {18620 |56660 JEOEL0 [0960'L 10vZ 1 [¢ov0€L 0000 L {659 V9 [81060

122 101 |8292 O [ov¥S L 16214 £ [SL29V [E9L1 £ |0000' | |OvZ0C [PZ16 0 [1EES0 [pBOL'L [oveZ L JOL00'L [PZIZ'L 0000 L J£861 L 6501 | |£080 | [9LS ([0000 [[PE98'TY 6569 ([OXEL 76 |80V

Z1CS1 [8WO ¥ (0990 1 [914 S |S1O1 ¢ [20T0 €5 [0000 ¢ [Sv29 0 [18£0'L [6056 [61£0'1 [08£8°0 [2£860 [10160 (65560 [118£0 #5860 25960 [0110°L [0000'L [PPSO EE 299 1 [T189'6¢ 10LL0°0

ot |osoy9jeciy | [S89E L ¥ [298S ©Z [0000 1 (G105 0 |CeZ1 L [PZ960 |8SS1 | J1SZ0 L [66860 05800 [011870 [£08£0 601610 [21£90 [Z1960 [LL69'L 0ST0 06 [18€Z | [SYEV VL {65280 PR1L0 {FL160
1Z [166r'S [vOSZ 1 [O152 9 [699L € [18SY'Z9 J0000 L {££960 129880 jOPL60 [S0L60 16640 [CZZL0 [92260 [SOZL L |POLL 1 J0ZZ00 [92860 |SZC60 JOO0O | [0606ZS |91 L |8ZES VB [SOIR'1 P22l [90560
-

wmmmmwwwmwm:,:wmmmm

= NEEREENEEEREREE

3
O3
3
3
AYO
AVO
AVD
AVD
AV
LTow [oZevt O |Z99L ¥ |c0192 6089 LV [0000 L |1EPS € [61160 9091 L [ZVST L [IP90'L 49960 [0L£1'L [ESL0'1 162960 2906 C jPPS60 G890 [0000'1 [OTI8 VS [61091 [YUBD06[BIZL L [6966 0 [98PP 1 |AVD
AVD
AVYI
AVD
AVO
AYD
[4]
g

2 ® g S

Camposite Database
Navigation & Core Avionics Categories

09t jeri6Z[20W0 No_ﬁn__voo__ﬂenn 0000 t |2608 go__g_ 11060]2991 | [psec0]2e200]0060[01940]0002 | [9911 1 j0P82 1 [96EC L [STLL'LL [S065 | [PS8L D6 [99CL 0 [¥L60 | [EET L RER

b [006% 72966 0 [0L00S [Z166 2 | 19v6 &% [0D00 1 [986Z 2 [{6P6 019060 6260 0 |PZL1 L [8996 011051 { [9191 1 [SL890 1506 0881 110001 1[09SL L (615610000 | }96HT LY [IPEBOJLLTE | [S9660|AVO[LI
tCP JSZve | [POC0]0ACS | 181160 912251 0000 t 6014 012521 1 16944 0[ve96 0 [71£8°0 [6b00 | [Z198 0[pZ890 [9p£0 1]0600 1 [€8S1 {JOEVBO|IPLL L [£26210 |0000 23 '0]06660]L0€401AVIIOZ
O¢ 16919 £ [C10 | [0595 §|V901 § |1 942 590000 | [6EZ60 |25p9 0 |L696 090 L [EC0D [SLZ1 1 (9881 T |#PUO[PLSOO0]LZIZT 1 jOLZA0TIYIL 02668 | [86196]0000 L [OvEC oY 00200t [IEE6VJAVOZL

T (5vov e ootz 1 [621Z 91052L € [OVEZR 19]0000 | |CTAL 0 [064A0 [00a8 0 |£(560 0004 0 [VE08 019218 010491 § [CLE6 0 J0OveC{6R08 {07 0 [6ATL 1 [9v0C 9]0000'L [£16019199¢0L JCLIO0 | [822LL AVOl8

160 |69 [E9C0 02981y [C01SZ[6099 LY 0000 | [LEVS € (116 U1 ovse 1 1990 L |Z996 00211 [090 | [62960 29080 [v¥56 015826 00000 | OEI87S [6109| [PORD0S 1811 | |6966 0090 | IAVO
ZZVG1 [7E969 200 | (06RO 5240 ¥ |98 L9 0000 | 80050 [6L940 {9990 | [16c60 |06RL 0 [S5€60]S0Z8 D {7eZ1 1 | 196£ 0[S6660 [C0EL 00960 | [LOFZ'L [¢690 € [OD00'L 1659, 79 [9106 018960 6881 L AVDI[C

et

T2 101 [9202°9[9vS L [6ZLL £ [9429 ¥ [£9L1 £ JODOD 1 [0V20'€ [PE190]1665 0 Vo6t | [4PeC 1 (01001 [¥Z1271 0000 L {£8611 [6681 | {£880'Y |LCE | [0000'L [VE9R ZW (6660 | JOZEL WO 0]£L50'L [F2OT | [AVD

LIEGL [oer9y TI91429|S101 € |C020 ¢9 J0000 L |SPL90]18¢0'1 |60560[61£0'L [98L80]2L960]10160]65560]1 1840 [¥S8610{2S96 001 LO'L [0000 | YOS €T TSV 1 [C19994 J0LS80[6LL60 |00 L IAVOIR
QL 10OV 9 |6ALP | [S99C £ |POSK ¥ |299% ©Z {0000 | (3108 0S541 1 [PZ0S0 9551 1 {15201 (66960 (C9990]91190](08L 060160 212902196 0{Li&0 L 0SC06 [LOSZL [OvErRL ¥SLLO[PL160]AVYOI6L

—

2% 1166w G |POST | [9152 9]009Z € | 1US¥ 290000 [|£Z960]29900]0P160 [S0L80]16C40 (2222 0[RL8D[SRL1L [POLL | J0LLU0[8L96 0]SEE40 {0000 | 10606 (3 QLW | [STES PR [IVIT L [6ZT ({90560 AV (¥
'0F [906€ 'S [£{SLL 0[RSV T Z[v26G 9 |0000 L [S19C 1 |SIAA0 |CER0 1 [9100 1 {1890 [29C1 | |Z0I&0|OveC | J0BYL L |LOGE | | LSTEO[SPE0 1 |0000'L [0Z6E TS [0000 L [LPEZ'19]€L00 0 JZVS0 | [S661 L AYD 8L

SIZ01C 1 [BL00 95796 ¢ [C01099 0000 { [IVEA T [{VZ60 |COZE | (V9980 |6rLL 0[9SEZ | [95290]20ew0(ST16 0J0REL L 66Ty L [20901 {0000 [PISEE6 [LLEL L [291S'98 S9960 [peS1 1 {1SLLL JAVD|L

76900 |1 SVP O JOLOT0 [OZAVY |O0O0D [95590 |99 0]€2A1 1 €179 0]8£6£0195L1 L [8S10'L [66¥L'1 [POSROLEET | [€65L 0 TEPO0 (|CACE | {VRE9'9Z [0000 L [VSZ0 ¥E |1SL60]Zvp0 L [S5E0't JAVD[ZL
STULZU 1aZS9S [01L 15 € [9229 95 [0000 | [IC0E € [STAR0|SVWL | [POVL 0 |VRL60 [FeLE | [690T 1 [99v1 1 [62»60 2001 [19211 [E4111]0000'1 [9£61 OF 0000 L |992S Y9 |£660 1 9281t 9902l [AVD
Z10LS 01220 E |ZV2L L 9121 92 [0000 U [629C ¢ [9101 1 |[WWeR 0]tr060|tZ00°0 [CI10C | [T000 0 |Poec 1 {069 | |0Sv£ 0 [SE4Z'\ 0250 1]6L291 [2817889 [0000 L [9T0V &5 |[PPCa 0 (6698 0 L1996 DAVt

P6LZS][1902 1 [84009]6895 € 0910000 | [7{99° 960590 |09L00 |£4660|{6V OJOZLP | [USPT L |20 | 2260 L [Z692 | [6VO1 L [0BLT 1 [1S991 [1TE'68 [¥RLL'L [1eG1'98 W1 P8 0 JEWOZ L J92EC | JAVO[bL

ST (91101 [OCIY 611299 0ROV £6 [0000 | |88 0 [Y9ca0 [e9E 0 [066 | [61P6019120°L [9Lrt 1 [9899°0[L1v6 0 090 L9CL | [(8290]2LL0'L [SSIL L6 1988 L [(PoL 18]9810° J69EL 0]8SZ80 JAVOILL

T2 JO0I6111ZIC0|0995 1 [ZOP6 0 |PIS9 S [0000 t [9805 OL6EZ ¢ [6690 | (V2290621601681 L [OVE0't [££29°0[61€901(980°L [€9€0 L [02E6'0 {0000 1 [SB6! ST 0000 | [860L SY [€4160{¥080 | [9LL0JAVIILL
0591 [9429016171 02010 0]Z0CVD]08tL £ |000D t [E1£0 ¢ [ZE00 | [LEIL L [OE960 [6P6T 1 5960 |Evre0[S0990[9996 0125160191 L L [PeZZ | [0BLY'L [SPSTO8 0000 | [7208 09 [#P06 0 [92LT | [8Ze00 IAVORR
TZ1 02t [ZZIT € [STOR L [Z1ev 6| {9e9s [5616%6]0000 t [ZZI8 2 [ZB6L O]LvR0 | [6V(1 | |E9E40 6288 L UL [9SPT 1 [95E0 1 [TA2Z | [VE61 1 [0&P6 0 [(€81 1 [600£ 0L [0000'L [1E£1 TS [#9160[CEL60 [POE6O[AVN

Z100 |SPe0 01012006401 0]¥¥900]15£01 [0000 | 6814 0|66280 |L0960[2EL6 0 [€0P80 L1610 0590|0096 019860 (090 L 19516018592 | [6L161 0661 66 (00001 [259¢ Z¥ {9£080J00P6 0 [298L 0 [AWN |

6 16671 99599 1 |$95C 699559 |[P514 260000 { 620 0 [Pevs 0[SSER0[860 1 [68S1 L [IP6LO[CLE1 1 [1£6610]9051 1 |¥290'L [SOVO L |08 00000 | 905T 08 [6LvL L [OPPT OL [LZP60ITI0L L [19060 JAVNIL
SeLL 192062 [PI990[o90C € |Z&L6 1 [0860 Tt [0D00 1 6005 | |9239'0128£0 1 [E9%0 L [S91€ 1 [8228°0]0400') [TG9C | [P£660|PL20'L [O0SZ'L (189600600 L €E1¢ 5600001 [SS564°9¢ 668970 JOVOR 0 |LLFBTIAVNEZ

F.4

16561 [09092 (1650|9606 T JOL9¢ 1 [9249 6Z 0000 | [ev9¢ L [5511 L [10EL L |S610t [Pe90'1 [6£660]vo60't [ve90 [9210 | [£601°L [£0LL L [9Z160 [6Le811 [S0LC L9 oovt’l {1 0L JLLOPO[E1Z6 0 [ETEL O [AWNILL

TUEOL (225 2 [900C | [FEOS 91921 5 [P219°50 |0000 L [ZEBL ¥ [9120 1 |ZIEA01Z0LZ | [6hT8 0199801 [SOp60JZIPO L [LE90't [0V | [09S801L9960 |6ZVR | [ELW96 'L [9606 £V }LL6L'L [SE9T L JSPLT L JAVNIL
(250 0% [Z10C P |[79660 [0046 ¥] 1966 Z £ 100 &7 J0000 1 {0905 1 |6629 0]LLL60 P96 0{S200'L [(Z280[Stat'L [1660'L [09(60{0EL0'L [60ZT | |06 0 0000 L (SHVS 1 {16V &€ [F90L 'L [605610 1951 L |[AVN 8L

81 [SA0U S [WULE | |60LS 9|CvR6 € [2/6099 /0000 | [PIRE0 60101 [£2460 0106 0 [60¥90 102940 O[1690 L [£TV90|C0c0 051060 (17200 1L9LE | [TL0T8L|L60R L [92VS'66 [8906 0 |4601 ' [POLIVIAVYNIGE
VT J2000 ¢ [914V 0 [999% £ Jo00V | |6ZCS €2 |0000 | [8L9°Z 166171 [962 | [€8r6 01960805881 T[98 0J€L10'L [PLLZTT{9190'1 [P601 | {2585 L [2ES8 P8 T[5295 €5 | {9960 [0c98 0 |CVOL | JAWN S
Y1 (5666 0]Z5¢1 0]91890]200v0]256L'9 J0000 1 [£5290[S00'L [EL€L 0606108290 [S0 | [2£990]095L 'L I '1{95180]1589°0]0000'L [6rLADE ' [LOSZ 2v [S££0'L [¥OR6 00002 | [AWN[ZL
1666 |LVI0V|&R160[E0PS Y |VetL T|LELT 97 [0000'L |vi8E 0 |SRA0 011289 0]t990 1 |8BCS0JLIZZ | G201 | [V2160 6200012200 | |96660]0000L [ZLPL6E [BLE0') [VOZD'SP |92&FD]IS1L L [1S10L [AVN
191 |£552°G [900% | [9620 9|PUta € [VR0E 99 JOD00 1 [SSLV'S [£560 1 [STZC 1 [1240 L [SIELL 6840 [STEZ L [0020'L [9SPO'L |89ST 1 [9€22 1 (12461010000 L 99V SV {POE L [EL0000 |SYI0 | [TZE0'1 [{SVO'L |AVN
SZ L4191 S]9STLO[NIIE 1Z]2651 9% [0000 | |6P05 [[SL00't [PSTA0 |€20E 1 1662 1 [P9P40 [2£06'0 [20P0'L |£0480]1 16610 [F9OE"L '1{909¢€"1 [919£ 8L |0000'L [LSP0PY [OL20 L [VZ20 | [ISPR O JAVN
TLLLL [RLLTIOPOIvIONT 115966520000 1 [PPO'L 21001 |20 1 [1119°0 [SVCa0{LeP60)Zvee | |Powl | |Pee0 L [VEPR O [PLELI J19C0T |99S1 L [E2LG 4R |L8LP | [E4SZ'SE [VEVS 016000 L V{60]AWNIZ
1 8¢ [Ev198]16a0 2 0168°T [0506:6€ 0000 L [iSY P m—o«.—_nsa.— ZC61 | [VZVB 09662 | [9990 | JOFEWO0 |CFaC L JULLL | [6PT L [EW0 L [2406L [9019'94 0000t [659C ¥ [LSEL 1 19/180]1€180 >(Z_2
S 11196 L |6Z60\ J6Z00 6]T60FS [9L02 0610000 | {LTIV L [2O1Z 1 [SEe0 | |11960 8986 0016011990646 1 |SIFT 1 [(RTO|PSI6D |F0860{60W | 105619 \S95 L {£15660 €996 0{PZEB 0 |66560 IAVN
661 19658 012892 L[Zeres T [9SLZ L JOBLL O] ISV [[&LZ60[€91£D[900U'L ISBIO'L |£9i L'L 62101 [LPOZ'L [€LL60 P56/ 0 L1351 Z0EVR|ELEv 1€ [S08L 02090 | [€9£80 JAWNILL
LSL 6V 9yres L [S096 0Z19'S |P(¢5 960000 L YSPO'| [FOM0[1Z260[£090'L | LS8 0 [SB06D |E0RS 0 [PL&RO [BYLL L 9180 t JOS6R 012001 [ZE1E1 JORYO' 9L [9L0T'1 |86T0 €L [££680 |80 | [SCOEL JAVNIL
76 [CO119]10659 | [OVWC 8)Z025°S | L7915]0000 1 |60C6 L [66660 | L2660 [Z1E0 1 69401 60660 [(POSOTPOSL 0 (9991 | [ESI1Z'L [¥9L | [¢512'1 |000D 1 19891 L€ 0000 1 {veS1 L€ [OPO'L [28260 8290t [AVNIZL
1020 70600 [0Z000160000 {01200 [8FE 00000 & 12590 0]2ve0 | 26180 6291 | [02L€ | [YPLL O]9, O |oveT 1 [€2960[0S0'1 [8220'L |8900'1 [0000'1 [2¥es'ZD (00001 |8€€40¢E JOOP6 0 [90190]2Z6L 'L ><Z.ﬁ
_x 0 g b}
:.-

memmmwumomm wmwwmmmwmwmmmm

2 EL
WNN

aald

o

LB YR i [£908 € [#909 L1 [CCOR'S [SOL9SLL L [S14Z2]2081 1 JOLZ90 [82LL L [Iee8 01190 1L {90LZ L [SToL0[reey L [ywil'L [2LL60 {8119L [E900 L8

" LA JLL98 3 \ jive0 L (L'} jvece0jLL990 UL {9012 {2840 \ [wwiLL |26 LSt riLY L [SLETSe ‘L ja0L UL jvovR O AVYD!
99 EL IL oISt 1! ' N9) AN G T) 11]901T { |CCoL O]yey L vwi1 L [ELL60 [S00W | {AELTR]LITY L [OIELZ8 Lottt \WwOlel }
OLZ|R9Z St € JSIO09L [CSZ0 8 [LIV O LIS L2601 'L JOLZo0 [eetL'L [veee 014990 1’1 [0tZ{ [CTAL0[vaey L Il | [2LL60 [eoIr L (2T 08 [oOPL L JeOL L't JPavS O AV
101 90 [S616°CL [9121 € t " [rrre oSt 1 {C¥OL 1L JOLVo jedtt’t 0{1L90 ULIPOIZL 8T 0 [GZINN 7713 i OLLIYSIPL S LLI12W1L Je0t 1L OAVOIOL
A ¢l jeAR0T k]l 'L 191 1]98i9t L'l 111 [ve080]14990 1L [901T L [ST8L0 LMLl JELLs L[St L[“LjeoL Lt [reve O AYD
HTWL Tt 2L L n L]osett A3 821t L [VE090]14990 TL[901¢ | [SZa0]voov | [wwil'L[2LL60 [riSTL WIS L (20121 St 'L [60L1'L [rY DAV
COL [9RLL L1 [SLYET[E00L WL [899L L)IvtL AN (N ozLL'L [pee80] 1L 0 UL [FOLZ | [STOL Oy L [ypiL'L [TLL60 Jwebdl L LLSTLL[LLLL'L JULSSLL ‘Ljeontt OAVOIEL
Lisiarit Tlvsiest 9 L0 § 1 X} LU\ [veeR0]tL990 UL oL L [CTaL Ovesw L [vwiL'L 24460 (208t T 31 wZL el OAVYIleL
oz £l oLt] 1] UL AN 49911 [901Z 1 [€2AC0|veey T [owL L L [ELL610 J620L | [S08T£9]1990'1 (90T L! ‘Ljeoitl YOIt
19069 L8O JL6L Tl {NIOEL "LiseLoL 1l 0 [8CL il {ME80]1 UL[90NT | [STALO]veer L ol 1 (24460 [1LS0L [ER0E'S9 1 [E90C'99 ‘L j6OL 1L [YOVROAYD
m 60 [9WOL 7198 (] {114 118160 1L JOZR0 8zttt [IRe80[1{990 Lt ojvesy L [ywel L [TLL60 L9V e 1 JLSOp €9 109t L JeOLL'L VD
G yeL JIsLol 'zl 910t D Ay) G i VL[S0LZ | o{reey L [redl t [TLL60 | (995919 'l [1oLt VAV
s ° AURUE L [2ve8 yéit 'L [SZ180]ZESL L JOZVO JRLLL I8 [1L990 11 (90121 [STacO[veew | {vpeL L [2LL60 ' (&8 'L [SO£4 45 [oorL 'L [60LL'L [Pev8 0 AVI|L
. P ' 6 L6611 [L600S 3L | [eL16D]2eSI L 0 [8ZLL'L [ree90]LL9%0 UL [S0LZ 1 [SzaLoveev L Ivpit 'L [TLL60 'L [8Y96 (S 'L [ov0e LS 1L [6OLL'L [V8YSOJAVD
n {9 [vORe ST LL{L609S TUL 1 {72060 [Zes1 'L JOLZ90 [RZLL'L [¥YeCR0 €09 D UL S CIU G G (T | {S20C9S 't 95 [l [eott 't [VVSOAVOIS
& [Sveos [T 01 6209 |L0Z8 601 00001 [1890'L 'L JOLZR0 [S2LLL jpeee0[0iL0 U'L[901T 1 [SvSR0[veer | [p¥LL 1 [2LL60 JOOOD | SO YS L {E099¥S [T9PL'L J6011'L [FSVSOJAYD
1641 AL S X S0t [t6ce S vt it vol L]ee8LL 1l JoZvoseii| [eR0]Le8L0 'L [901Z 1 [TZ060[veer L [¥ps1 1 [S£L60 JOO0D| [(SS0ES 'L [LS90 €S ‘L {601 [PRVSOAVD)
4L JLISS'S JOLLOCINOTOL [eLLL S0L '] X OTLL 1 [PECe0]Z6107 [66S1 | [FO1Z1 [STL00 [vaev L w1 1 {24460 [0000'L [920S'LS 1 tejoori L jeoLL L XE)
'l [$10001 14 001 1 [9960 L [Z0811 JOLT90 [1] [ISER0[IEesD 171 J901Z 1 [9901 1 [pR9¥ L [owdL 't J2L£60 JO000'L 08 1 05 J2L't JAOLL'T [Ye¥SDAVIIL
3 c m
: WGZ_M_ZZW PEREFOFLE

'L [$90@'£8]2oPL L [6011'L [FeYSDAYO

“

F.5

6% Growth

Series Database

te2 108 91 {1902 ¥ [¥2PO L2]6859 2L [2v3L 012 | [SSEL T{Le0T | [S6LL 0]L5990 0[(90[996Z'L [{6560]90L0°0[RVPL 01201 1 [SaLYL | [8LVC66 [SY0R'L [9LvE 68 0{9082'1 {TLL0'L WO

04 9906 £ | (g0 |900T 2L {2019 200 | J{L80T [L&OT L (0]L9990 O [L00[9062 | [16660[S0L80 L0]1201°1 {96¢v'1 [Ov0s | [L969 06 {1684 | [(560 96 010002 1 [TLLO AV (6t

[W O [ULLL L (TPl [§{ 0142 { £0{(5980 OLWe0[0062Z | [16860, 0 01201 L 196Lr 1 [E999'1 [PI6E LO]09SL') (Mo L6 0 808 | [2£L0'1 JAVI |81

i 40 C]e] [Y 'L [9608'| [£602T L 10]L9990 3 | |16860 90 (O[120L 1 PLINOCL[L999 S |60 | |L959T6 0 [9082° L [TLLO'L AVYD[LL
961 061 [CYYE St [SYOP L1966 L1 [L6080L {1TLL 0BL L]¢ { i} L0]L5980 L O WO 1 [16860]90(8 0 LOJLEOL'L |S&LY | J01491 0619498t 06 019082 L [2LL0'L ZVYD

'St ot 413 1 [C88L €21 'L OOV | [(eO%'L 10]£5990 0 1 [16860 (14 L0120 1 [S6LP 12005 1 [IPeS 9810009 L [IMeS 0 | ROt IAVO[StL

O [SLE9 Pt [(Z288 1 Aol LiStLS L1] 0[(9900]|629L0]L¥90 {9962 1 [16660 909V 012011 [S&LY L [1vor'L |SSST R [eZEV'L 00082 L [2LLO'L AV

1 14 Sl & 6L 00t] [§Y 1 t ‘h (9990 V{08062 | 16560 90 010201 | [S6LVL JOELY | [/9S00R JSIOR'L [V9S008 080821 |2220't]AVOLSL

{ L 1 & [ESCCSt 1 [6990't j(&OT L 049980 O 996T 1 14060 [90L80 {0201l [Saerl 'L JLLPO L [ECOT | |LLNNL 0180821 [ZLL0't IAVI[ZL

00 el X " 9 [HIZ0ovt '1 [S196 014602 t 10](5980 0]|¢9v90 '{ 1696090480 0112011 ¥ [vO9T L JOLLO WL [66TT 1 JOLI0WL 0 [0082 1 [2LL0't JAVIILL
Ol Tt TIECIC vl [SoES 8 [yezt vt 1 '0[L60% 1 [S6LL 0]L9990) Y] { [16860 90 (O]t 'L ¥ Lvel L [TpoL 1480t L (NY3 0082\ [LLOL JAVD
43 LI EL[ISICE [{ VJL60T | |9OLL0{L9990 0l¢ 96T | 1166060 L2011 JSaLy'L 106Xt L 99]8601 | 99 0|90 t [TLLOLAYD

Ly riss'ii 999t €L 'L 181 | [S0690 2608 L L0[(9990 0]¢ 11688 0 0112011 JSOLY L [9890 L g9 LP90’L 0 1 2O AVYOe

1111 W28 e 1 [755 3:4) 1]R190]4602 L 1049990 Ot 11 ST 012041 i 1 , 1 $9 0 13 'L AVYONL
[1] 90l 12T L [9089 121 [§ 48 2 | [9acz0]i5980 OO0 [0062 | [14960 900 (012011 [Sairt L 09 1) 0 | [¢LL0'L JAVD)]
oy 101 £ Tt [9L { [1 |98LL0](9980C 0 'L |16560 £ 0]1201°L [Sadvt 1 '{ 0 770 XA
53 'S { t {9 it 'L [SSLL01L t L0]5980 0{8L4R0 1[165860[06£60192PLVL2DL L [SOLY'L 'L {OCYT'95 0000 L 0 [9082 1 [TLLO'tL AVYD

9 'S t Ol [L64v9 [£v91 90t 0000t {9M6L 0 [£60T 1 0[{9990|&9L0¥9ELD 'L [16960]r1660 L0lLZ0L'L ¥l 'L [€290YS 'L [€280YS 0 [908T | [2LLO'L AV

] 16 (443 L {900 Y0t I 0 1 [} L0[L9990 i 0109621 1896026901 L 0{LooLL ¥l 1 I 1 28 JoOre 08082 ([2LL0'L WOR

9L 'e JS1i0T 6 V09 o0 1 N 0{{3980 Y 0 L L&A 01LSLT L [pL OJLEOL'L i 'L 1] 'L 08 0Ove 0 19082 L 12440t AWD (L

g m m m w s BB I _m 2 8 _m 4 ‘w ‘m Q m m & P w :

F.6

X

10.

Bibliography

Babel, Philip S. Class handout, Colloquium, Systems Software
Management. School of Systems and Logistics, Air Force Institute of
Technology, Wright-Patterson AFB OH, 11 May 1993.

Banker, Rajiv D., Srikant M Datar, and Chris F. Kemerer. "A Model
to Evaluate Variables Impacting the Productivity of Software
Maintenance Projects,” Management Science, 37: 1 - 18 (1 January
1991).

Barber, Brent L. Investigative Search of Quality Historical Software
Support Cost Data and Software Support Cost-Related Data. MS
thesis, AFIT/GSS/LSY/91D-1. School of Systems and Logistics, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1991 (AD-A246659).

Barrow, Dean, Susan Nilson, and Dawn Timberlake. Software
Estimation Technology Report, Hill AFB UT: Software Technology
Center (STSC), March 1993.

Boehm, Barry W. Software Engineering Economics, Englewood Cliffs
NJ: Prentice-Hall, Inc., 1981.

Boulware, Gary W., Belinda J. Nethery, and Bryan D. Turner.
"Maintenance Software Model Assumptions Versus Budgeting
Realities," National Estimator, Spring: 13 - 25 (1991).

Bourque, Pierre and Vianney Coté. "An Experiment in Software Sizing
with Structured Analysis Metrics," Journal of Systems and Software,
15 No2: 159 - 172 May 1991).

Brooks, Frederick P., Jr. The Mythical Man Month, Reading MA:
Addison-Wesley, 1982.

Cioch, Frank A. "Measuring Software Misinterpretation,” Journal of
Systems Software, 14: 85 - 95 (February 1991).

Compton, B. Terry and Carol Withrow. "Prediction and Control of Ada

Software Defects," Journal of Systems and Software, 12 No3: 199 - 207
(July 1990).

BIB.1

11

13.

14.

15.

16.

17.

18.

19.

22.

23.

Corbi, T. A. "Program Understanding: Challenge for the 1990s," IBM
Systems Journal, 28 No2: 294 - 305 (1989).

Defense Systems Management College. Mission Critical Computer
Resources Management Guide. Washington: GPO, 22 May 1990
(AD-A264652).

Department of Defense. Defense System Software Development.
DOD-STD-2167A. Washington: GPO, 29 February 1988.

Department of Defense. Mission-Critical Computer Resources
Software Support. MIL-HDBK-347. Washington: GPO, 22 May 1990.

Devore, Jay L. Probability and Statistics for Engineering and the
Sciences. Pacific Grove CA: Brooks/Cole Publishing Company, 1991.

Eddins-Earles, Mary. C°I Software Cost Estimation Model
Development, Final Technical Report, October 1984 - May 1987.
Contract F360602-84-C-0154. Griffis AFB: Rome Air Development
Center, September 1987 (AD-B120 201).

Enhanced REVIC Advisor (ENREV). Version 2.01, IBM, 258k, disk.
Computer Software and manual. Keith Ernst, 1991.

Fenton, N. E. Software Metrics: A Rigorous Approach. London:
Chapman & Hall, 1991.

Ferens, Daniel V. "Evaluation of Eight Software Support Cost
Models," National Estimator, Spring: 3 - 12 (1991).

. Ferens, Daniel V. "New Perspectives in Software Logistics Support.”

Logistics Spectrum, 26: 4 - 8 (Spring 1992).

. Ferens, Daniel V. "Software Cost Models: Quo Vadis," Journal of

Parametrics, 4 No4: 64 - 79 (December 1984).

Fried, Louis. "Team Size and Productivity in Systems Development,”
Journal of Information Systems Management, 8 No3: 27 - 35 (1991).

Glass, Robert L. and Ronald A Noiseux. Software Maintenance
Guidebook. Englewood Cliffs NdJ: Prentice-Hall, 1981

BIB.2

30.

31.

32.

33.

34.

. Greve, Alan R. and others. The REVIC Advisor (REVAD): An Expert

System Preprocessor to a Parametric Software Cost Estimating Model.
Alexandria VA: DOD Defense Logistics Agency, September 1991
(AD-A242707).

. Gulezian, Ronald. "Reformulating and Calibrating COCOMO," Journal

of Systems and Software, 16 No3: 235 - 242 (November 1991).

. Hager, James A. "Software Cost Reduction Methods in Practice,”

IEEE Transactions on Software Engineering, 15 Nol2: 1638 - 1644
(December 1989).

. Henry, Sallie and Calvin Selig. "Predicting Source-Code Complexity at

the Design Stage," IEEE Software, 7: 36 - 44 (March 1990).

. Kane, Patrick T., Donald J. Reifer, and Douglas Willens. SoftCost-R,

Software Version 8.0, Manual Revision - October 1989. Torrance CA:
Reifer Consultants. Inc., 1989.

. Kankey, Roland D. "An Overview of Software Maintenance Costing,

National Estimator, Spring: 40 - 47 (1991).

Lederer, Albert L. and Jayesh Prasad. "Nine Management Guidelines
for Better Cost Estimating," Communications of the ACM, 35 No2: 51
- 59 (February 1992).

Lederer, Albert L. and Jayesh Prasad. "The Validation of a Political
Model of Information Systems Development Cost Estimating,”
Computer Personnel, 13 No2: 47 - 57 (July 1991).

Lehner, Franz. "Cost Comparison for the Development and
Maintenance of Applications in 3" and 4" Generation Languages,"
Information & Management, 18 No3: 131 - 141 (March 1990).

Low, Graham C. and D. Ross Jeffery. "Function Points in the
Estimation and Evaluation of the Software Process," IEEE
Transactions on Software Engineering, 16 Nol: 64 - 71 (January 1990).

Mukhopadhyay, Tridas, Michael J. Prietula, and Steven S. Vicinaza.
"Examining the Feasibility of a Cased-Based Reasoning Model for
Software Effort Estimation,” MIS Quarterly, 16 No2 : 155 - 171 (June
1992).

BIB.3

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

NeSmith, Robert E II. A Study of Maintenance Costs of Air Force
Large Scale Computer Systems. MS thesis, AFIT/GSM/LSM/86S-15.
School of Systems and Logistics, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, September 1986 (AD-A174454).

Neter, John and others. Applied Linear Regression Models. Boston
MA: Irwin, 1989.

Oman, Paul and Jack Hagemeister. "Metrics for Assessing a Software
System's Maintainability," Proceedings of Conference on Software
Maintenance. 337 - 344. Washington DC: IEEE Computer Society
Press, 1992.

Ourada, Gerald L. Software Cost Estimating Models: A Calibration,
Validation, and Comparison. MS Thesis, AFIT/GSS/LSY/91D-11.
School of Systems and Logistics, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991 (AD-A246677).

Page-Jones, Melir. Structured Systems Design, Englewood Cliffs NJ:
Prentice-Hall, Inc., 1988.

Penedo, Maria H. and Christine Shu. "Acquiring Experience With the
Modelling and Implementation of the Project Life-Cycle Process: The
PMDB Work,” Software Engineering Journal, 6 No5: 259 - 274
(September 1991).

Price, Gordon, Bryce Ragland, and Gregory Daich. Source Code Static
Analysis Technologies Report, Vol I, Hill AFB UT: Software Technology
Support Center (STSC), March 1993.

Price, Gordon, Bryce Ragland, and Gregory Daich. Source Code Static
Analysis Technologies Report, Vol II, Hill AFB UT: Software
Technology Support Center (STSC), March 1993.

Rehg, Virgil. "What Should Cost Estimators Know about TQM?"
National Estimator, Spring: 32 - 39 (1991).

Reifer, Donald J. "Asset-R: A Function Point Sizing Tool for Scientific
and Real-Time Systems,” Journal of Systems and Software, 11 No3:
159 - 171 March 1990).

Revised Intermediate COCOMO (REVIC). Version 9.0, IBM, 244k,
disk. Computer Software and Manual. Raymond L. Kile, 6 April 1992.

BIB .4

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Robson, D. J., and others. "Approaches to Program Comprehension,”
Journal of Systems and Software, 14: 79 - 84 (February 1991).

Rubey, Raymond J. Software Management Guide, Hill AFB UT:
Software Technology Support Center (STSC), April 1992

Rumbaugh, James and others. Object-Oriented Modeling and Design.
Englewood Cliffs NJ: Prentice Hall, 1991.

Schwartz, Evan I. "Turning Software from a Black Art into a Science,”
Business Week, Special Issue: 80 - 81 (July 1992).

Silver, Aaron N. and Joseph D. Suhr. Technical Report Software Cost
Estimation Study, CER Model Baseline Report. Contract N00014-85-

C-0892. Denver CO: Martin Marietta Denver Aerospace Corporation.
September 1987 (AD-B116 049).

Silver, Aaron N. and others. SASET User's Guide (Multiple CPCI
Enhancement) Software Architecture, Sizing, and Estimating Tool.
Contract N00014-85-C-0852. Denver CO: Martin Marietta Denver
Aerospace Corporation, February 1990.

Sittenauer, Chris and Mike Olsen. "Time to Re-engineer?" Crosstalk,
No32: 7 - 10 March 1992).

Stewart, Rodney D. and Richard M. Wyskida. Cost Estimator’s
Reference Manual, John Wiley & Sons, 1987.

Symons, Charles R. Software Sizing and Estimating Mk II FPA
(Function Point Analysis). West Sussex England: John Wiley & Sons
Ltd., 1991.

SYSCON Corporation. Avionics Software Support Cost Model: Final
Report, Vol I, September 1980 - November 1982. Contract F33515-80-
C-1157. Washington DC: SYSCON Corporation, 1 February 1983
(AD-A128523).

System Evaluation and Estimation of Resources (SEER). Version 3.0,
IBM, 603k, disk. Computer Software and Manual. Marina del Rey CA:
Galorath Associates, Inc., 15 March 1991.

Talbot, John and others. Post Deployment Software Support Process.
Report from Sacramento Air Logistics Center Process Action Team.
McClellan AFB CA: Sacramento ALC, 31 October 1990.

BIB.5

58.

59.

60.

61.

63.

Thibodeau, Robert. An Evaluation of Software Cost Estimating
Models. Contract F30602-79-C-02244. Huntsville AL: General
Research Corporation, 10 April 1981 (AD-A104226).

Toérn, Aimo A. "Models of Software Accumulation," Journal of
Systems and Software, 12 Nol: 39 - 42 (April 1990).

van Genuchten, Michiel J. I. M. and Hans J. A. H. M. Koolen.
"Applications on the Use of Software Cost Models,” Information &
Management, 21 Nol: 37 - 44 (August 1991).

Waina, R. B. and others. Predictive Software Cost Model Study: Final
Technical Report, Vol I, 2 April 1979 - 2 June 1980. Contract F33615-
79-C-1734. Canoga Park CA: Hughes Aircraft Company, June 1980
(AD-A088476).

. Waina, R. B. and others. Predictive Software Cost Model Study: Final

Technical Report, Vol II, 2 April 1979 - 2 June 1980. Contract F33615-
79-C-1734. Canoga Park CA: Hughes Aircraft Company, June 1980
(AD-A088477).

Yuen, Chong Hok. "A Statistical Rationale for Evolution Dynamics
Concepts," IEEE Conference on Software Maintenance - 1987. 156-
164. Washington DC: Computer Society Press of the IEEE, 1987.

BIB.6

Vita

Captain Ronald L. Warner, Jr., was born on 2 May 1960 in Okinawa
Japan. He graduated from Whitesboro Senior High School in 1978 and
attended the U.S. Air Force Academy, graduating in 1982 with a Bachelor
of Science in Electrical Engineering with Academic Honors and
Distinction. Upon graduation, he received a regular commission in the
USAF and attended Undergraduate Pilot Training (UPT) at Williams AFB,
Arizona. His subsequent flying assignment, Castle AFB, California,
included duties as a copilot and aircraft commander for the 924th Air
Refueling Squadron. His next assignment, at Wright-Patterson AFB,
Chio, encompassed flying as a dual-qualified instructor research pilot in
the NKC-135 and the NT-39 for the 4950th Test Wing. During this tour,
he was seiected as the deputy test program manger for Tanker conversion,
a KC-135 aircraft modification project that provided a calibrated water
spray for airborne icing tests. He also supported several tesi. missions
world-wide including the shuttle launch of the Magellan space vehicle and
obtained a Master of Science Degree in Aerospace Engineering from the
University of Dayton. Captain Warner departed the Test Wing in April
1992 to attend the Air Force Institute of Technology's graduate program in
Systems Software Management.

Permanent Address: 8901 Gardengate Dr.
Huber Heights OH 45424

VITA.1

Vita

Captain Darrell L. Wright was born on 1 March 1961 in Cheyenne
Wyoming. He graduated form East High School in Cheyenne in 1979. He
received an Air Force ROTC scholarship and attended Nebraska Wesleyan
University, Lincoln, Nebraska, graduating with a Bachelor of Science in
Physics (With Emphasis in Computer Technology) in June 1983. Upon
graduation, he was commissioned as a reserve officer and began active
duty service at the Air Force Geophysics Laboratory, Hanscom AFB,
Massachusetts. He was a program control officer and deputy program
manager for the Missile Surveillance Technology (MST) program and later,
the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A)
program. He also served as the Lab's cost estimation focal point. He
transferred to Wright-Patterson AFB in October 1987 and served as
Technology Integration Manager for the Integrated Electronic Warfare
System (INEWS) program and later, the SEEK SPARTAN program. He
was reassigned to the F-16 System Program Office at Wright-Patterson in
1991 where he was the Avionics Integration Manager for several F-16
avionics systems and for the procurement of F-16 unique pilot training
materials and equipment. He entered the School of Systems and Logistics,
Air Force Institute of Technology, in May 1992.

Permanent Address: 2164 Knoll Dr
Beavercreek OH 45431

VITA.2

Form Approved

REPORT DOCUMENTATION PAGE ~ OMB No. 0704-0188

PyOIC reDAMtING DUrAen 1Cr This - CHECLON O ATGIMATLION 5 291iMATEd 10 Av@13GH | NOUr DT "25POFe. NCLAING the LiMme TOr review ng iNst7u tidns Lear 'nr3 s sULrg Gatad sources,
ga(hermq ang maintaining the 1ata needed. and cCmMoieting ang réviewing the - Zuecton ot intrmMation Seng comments r Ar3iNg This DUr3en estimate r 3ny JtPer Jspect of thy
collection Ot :AtOrMation. .ALiuCING SUGGEsLIONs tOr raduCIng this Durgen 1D Aasthnglon Heaaqauarters Services. Liractorate for ntormation Operations 4ng Reports, 1215 ,etterson
Davis HIgr~ay, Suite 1204 Arlington, v 22202-4302. 3nd 10 the Othice ot Management and Budget. Paperacrx Reguction Pro, 2¢t13703-0188). Aashington C (0553

6. AUTHOR(S)

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

DEMONSTRATION OF IMPROVED SOFTWARE SUPPORT
LABOR ESTIMATION FOR AIR FORCE OPERATIONAL FLIGHT
PROGRAMS THROUGH FUNCTIONAL ORIENTATION

Ronald L. Wamer Jr., Captain, USAF
Darrell L. Wright, Captain USAF

i
i

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

. Air Force Institute of Technology AFIT/GSS/1.LAS/93D-7

Wright-Patterson AFB OH 45433-6583

i

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSQRING MONITORING
AGENCY REPORT NUMBER

None.

‘.

L]

11. SUPPLEMENTARY NOTES

12a. OISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited l

13. ABSTRACT (Maximum 200 words)

This study demonstrated two approaches to improve current software support effort estimation models
for aircraft software. Both approaches involved a functional orientation not used by cxisting models. The
first approach demonstrated how to orient a model to reflect the block change cycle modification process and
how to represent support effort changes over time in order to improve effort estimation accuracy. Current
software models do not reflect the support environment or the temporal characteristics of aircraft software
support. The second approach demonstrated how to calibrate a model by properly sclecting source data in
order to increase accuracy. Support calibration is not addressed by current models. A literature scarch
affirmed the validity of both approaches and the methodology. In addition, a standard description of the block
change cycle was developed and validated. A prototype estimation model was derived from the COCOMO
model and included a unique support calibration. Data was obtained from Air Force Softwarc Support Centers
but was unusable, so data was generated from the prototype for the demonstration. A method that was
developed to compare the prototype with current models demonstrated that the prototype is an acceptable
model.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Life Cycle Cost, Software Cost Estimation, Software Support. 251
COCOMO, REVIC, SASET, Cost Models. Softwarc Maintenance 16. PRICE COOE ,
|
17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI St 239.18
RIYREs

AFIT Control NumberAFIT/GSS/LAS/93D-7

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please retum completed questionnaires to: DEPARTMENT OF THE
AIR FORCE, AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT
PATTERSON AFB OH 45433-7765

1. Did this research contribute to a current research project?
a. Yes b. No

2. Do you believe this research topic is significant enough that it would have becn rescarched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can ofien be expressed by the equivalent value that your agency
received by virtue of AFIT performing the rescarch. Please estimate what this research would
have cost in terms of manpower and/or dollars if it had been accomplished under contract or if it
had been done in-house.

Man Years $

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able to establish an equivalent
value for this research (3, above) what is your estimate of its significance?

a. Highly b. Significant c. Slighty d. Of No
Significant Significant Significancc

5. Comments

Name and Grade Organization

Position or Title Address

DEPARTMENT OF THE AIR FORCE
AFIT/LAC Bidg 641

2950 P St

454337765

OFFICIAL BUSINESS

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 1006 DAYTON OH

POSTAGE WILL BE PAID BY U.S. ADDRESSEE
Wright-Patterson Air Force Base

AFIT/LAC Bldg 641
2950 P St

Wright-Patterson AFB OH 45433-9905

llll'l'l‘ll;llllllllllllllll‘lllIlll”llllllll‘lll!l .

NO POSTAGE
NECESSARY
IF MALED '

IN THE

UNITED STATES

